Detektor Technologie und System Platform: Säule 1: Technologien für hochintegrierte Detektoren

WP 3.1: 3D ASICS

Ulrich Trunk

HGF Detector Portfolio Pillar 1 Meeting

DESY, 13-14 June 2012.

Outline: The "W(ish)"-List...

- > Why 3D-ASICS?
- > Where to start?
- > What do we want to achieve?
- > Who is part of the workpackage?
- > Who else will (or could) participate?
- > Which technologies and processes are available?
- > Which one will we use?
- > What is the context in "Pillar 1" and the whole HGF Portfolio, and how can we gain from synergies?
- > What is our goal, i.e. final Deliverable and how will we achieve it?

Why 3D-ASICS?

If you need to implement more circuit functionality in the same amount of chip area "real estate"* you can...

- > use a smaller technology node
	- **becomes very expensive**
	- will have a negative impact on analogue circuits

> use 3D-integraton

- TSVs
- Wafer bonding
- **E** Limited availability

*this is the usual challenge for pixelated detectors –why not start here?

A hypothetical example....

Current State-of-the-art

Obviously with some existing pixel detector assembly...

>many more....

Choice should be based on our final goal.....

Disqualified as a goal due to an early start?

- > Minapad
- > AGIPD 3D evaluation

Enable any participating institution to produce 3D integrated circuits and detector assemblies by exploiting synergetic effects

- > among the participating Helmholtz-Centres and
- > technologies coverd by the different workpackages:
	- WP1-3 mixed signal ASICs
	- WP1-4 high density interconnect
	- WP1-2 3D and high-Z sensors
	- WP1-5 novel materials

Stimulate spin-offs outside the pillar

- > Tomographic dignostics of interconnects @ ANKA
- > Integration of high-speed data transmission (Pillar 2)

Vertically Integrated Detector Technology

Who is part of the workpackage?

Helmholtz-Centres:

- > DESY
- > FZJ
- > KIT

Karlsruher Institut für Technologie

Who else will (or could) participate?

External research centres:

> Fermi National Accelerator Laboratory (USA)

- > IN2P3 Institut national de physique nucléaire et de physique des particules (France)
	-
- > Institut Pluridisciplinaire Hubert Curien, Strasbourg
- > Laboratoire de l'Accélérateur Linéaire, Orsay
- > Max-Planck-Institut für Physik, Munich

- **> Paul Scherrer Institut, Villigen**
(Switzerland) (Switzerland)
- > Science and Technology Facilities Council, STFC Technology, RAL, Harwell Oxford (UK) **Science & Technology Facilities Council**

University groups:

> AGH University of Science and Technology, Krakow,

- > Albert-Ludwigs-Universität Freiburg,
- > RWTH Aachen,
- > Technische Universität Dresden,
- > Universitätsklinkum Carl Gustav Carus, Dresden
- > Universität Augsburg,
- > Universität Bonn,

- **INFN Florence,**
- > Universität Hamburg,
- > Universität Heidelberg,
- > Universität Wuppertal

Other possible technology partners?

External partners:

> Fraunhofer IZM

- > CERN
- > NIKHEF (NL)
- $>$ VTT (FI)

Which technologies and processes are available?

Full 3D integration:

- CEA-LETI Open-3D (TSVs, microbump bonding)
	- CEA
- > IMEC ?
- **MIT Lincoln Lab**
- > Tezzaron FaStack (TSVs, wafer bonding)
	- MOSIS, CMP, FNAL

TSVs (Thru-Silicon Vias):

- > Fraunhofer IZM / IST / EMFT / ENAS
- > IBM (Micron/?)
- > AMS (?)
- > VTT (eniac/KET bridge)
- > ST (eniac/KET bridge)

Bump-bonding:

> Fraunhofer IZM / IST / EMFT

SEMICONDUCTOR

> Ziptronix

>

Which one to use?

 \mathcal{H} ark

CEA-LETI Open-3D > Minapad - Medipix-based detector

Process Flow description: TSV last technology

Minapad 2012 | 25/04/2012 | 11

Main drawback: TSV size 60µm Ø

Through Silicon Via (TSV) process

• TSV lithography step: Double side step (Font side / back side alignment) • Via Diameter=60µm • DRIE Bosch 120um Silicon etch: ■ Etch rate~ 7.5µm/min • Low undercut Slope = 90° • Passivation oxide deposition x500 Sei.0,m SEM cross section of 120um ■ Temperature limited to 200°C TSV DRIE etched Step coverage = $20%$ Etch back: removal of the oxide layer at the bottom of the cavity Metal1 pad after oxide removal at the bottom of the via

Back Side signal redistribution

Passivation and Under Bump Metallization

Minapad 2012 | 25/04/2012 | 15

Open 3D[™] technological offer

Open 3D[™] technological offer

leti

Open 3D[™] technological offer / TSV

→ TSV Gallery

Open 3D[™] technological offer / TSV

TSV morphological & electrical results

TS

KLL18K1891500

HEGO' 'de'W

Certer.

RS6611061W24

AR 2:1

results

TSV characteristics

Open 3D[™] technological offer / RDL

Open 3D[™] technological offer / UBM

C CEA. All rights reserved

Open 3D[™] technological offer / Micro-bumps

Open 3D[™] technological offer / Landing micro-bumps

Open 3D[™] technological offer / Pillars

OPEN

Tezzaron FaStack

[Products](http://cmp.imag.fr/products/) :: [IC's Manufacturing](http://cmp.imag.fr/products/ic/) :: CMOS 130nm FaStack(R)

E

 $\overline{\mathbf{r}}$

TURNAROUND TIME: Typical: TBD

Ulrich Trunk, Pillar 1 Meeting 2012 | **Slide 25**

Tezzaron FaStack

Commercial from Tezzarons web site....

FaStack® Creates 3D Integrated Circuits (3D-ICs)

Tezzaron's groundbreaking FaStack technology creates fast, dense, highly integrated 3D chips. The heart of the process is wafer-level stacking. Device circuitry is divided into sections that are built on separate wafers using standard processing. Hundreds of thousands of vertical "Super-Contact™" connectors are built into the wafers. Finished wafers are metallized with a proprietary bonding pattern. They are then aligned with a precision of 0.5 micron, bonded, and thinned. Additional wafers may be bonded and thinned in turn. The finished stack is diced into individual 3D-IC devices.

Wafer Stacking

Tezzaron FaStack

Commercial from Tezzarons web site....

A variation on the FaStack process stacks individual dies onto an uncut wafer that is then diced into 3D-ICs. The dies may themselves be FaStack 3D-ICs, and the uncut wafer may be a FaStack wafer stack; this "stack of stacks" scenario allows for extremely flexible integration projects.

A Superior Technology

FaStack devices have many advantages over their single-layer counterparts. They are much more dense and their short vertical interconnects allow them to operate at higher speeds with a lower power budget. In addition, FaStack allows disparate elements to be processed on separate wafers for simpler production and greater optimization.

Unlike the separate chips in a "System-in-Package" (SiP) component, FaStack layers are fully integrated into a single IC by a dense system of through-silicon interconnects. FaStack devices match the tight integration of SoC devices while out-doing SiPs for high speed, low power budget, and tiny footprint.

Although other 3D-IC technologies exist, FaStack offers several important benefits:

- **>** No exotic process requirements
- **>** Extremely high interconnect density
- **>** High-precision alignment
- **>** Low-stress tungsten TSV for reduced thermal mismatch
- **>** No thin-wafer handling requirements
- **>** Extreme thinning allows 3D-ICs to fit in standard packaging
- **>** Real working devices since 2004 with **no** failures to date!

More commercials....

Applications for FaStack®

FaStack's wafer stacking offers benefits to a variety of applications. Sensor arrays, for example, achieve unprecedented density by moving the support circuitry to a different layer than the sensors themselves. "System-on-Chip" (SoC) devices built with FaStack reduce power consumption, footprint, and interconnect delays. Microprocessors built with FaStack incorporate a huge, fast memory cache on a separate layer. FaStack also enables enormous improvements in **[memory technology](http://www.tezzaron.com/memory/FaStack_memory.html) and allows seamless integration of differing process technologies. As 3D-ICs move into the mainstream, entirely new products will emerge to capitalize on this technology.**

Getting the FaStack® Advantage

Tezzaron is currently exploiting the benefits of FaStack in three ways:

- 1) joint development projects with technology partners and systems designers,
- 2) licensing the production technology to manufacturers, and
- 3) producing our own FaStack-based products.

In the context of WP1 we could (and should) make use of:

- > Mixed-signal ASICS (P1 WP2)
- > "Aufbau und Verbindungstechnologien" (P1 WP4)
- > "Innovative Detektorstruskturmaterialien" (P1 WP5)
- > "Detektornahe optische Signalübertragung" (P2 WP3)
- > 3D- und "high-Z" sensors (P1 WP3)

Pillar 1: The "Helmholtz-Cube"

What is our final goal, and how will we achieve it?

Proposal:

A 3D-integrated pixel readout ASIC which should be usable as a...

- > Calorimeter readout in HEP
	- **trigger capability**
- > Tracker Readout in HEP and HI
	- **In low radiation length**
	- trigger capability
	- analogue information

> Imager Readout in PS

- photon counting
- charge integrating analogue information

Outlook (i.e. my personal perspective of it)

