Detektor Technologie und System Platform: Säule 1: Technologien für hochintegrierte Detektoren

WP 3.1: 3D ASICS

Ulrich Trunk

HGF Detector Portfolio Pillar 1 Meeting

DESY, 13-14 June 2012.

Outline: The "W(ish)"-List...

- > Why 3D-ASICS?
- > Where to start?
- > What do we want to achieve?
- > Who is part of the workpackage?
- > Who else will (or could) participate?
- > Which technologies and processes are available?
- > Which one will we use?
- What is the context in "Pillar 1" and the whole HGF Portfolio, and how can we gain from synergies?
- > What is our goal, i.e. final Deliverable and how will we achieve it?

Why 3D-ASICS?

If you need to implement more circuit functionality in the same amount of chip area "real estate"* you can...

- use a smaller technology node
 - becomes very expensive
 - will have a negative impact on analogue circuits

> use 3D-integraton

- TSVs
- Wafer bonding
- Limited availability

*this is the usual challenge for pixelated detectors –why not start here?

A hypothetical example....

Current State-of-the-art

Obviously with some existing pixel detector assembly...

> AGIPD	Si, (Ge, GaAs)	PS	(DESY)			
 AGIPD 3D evaluation 						
> ATLAS Pixel	Si	HEP	(DESY)			
> CBM Pixel	MAPS	HI	(GSI)			
> Calice	Si, SiPMTs, MAPS	HEP	(DESY)			
> CMS Pixel	Si	HEP	(DESY)			
LAMBDA/Medipix	Si, Ge, GaAs	PS	(DESY)			
 Minapad (Single-Tier, Open-3D based assembly) 						
PANDA MVD/Topix	Si	HI	(GSI)			

>many more....

Choice should be based on our final goal.....

Disqualified as a goal due to an early start?

- > Minapad
- > AGIPD 3D evaluation

Enable any participating institution to produce 3D integrated circuits and detector assemblies by exploiting synergetic effects

- > among the participating Helmholtz-Centres and
- technologies coverd by the different workpackages:
 - WP1-3 mixed signal ASICs
 - WP1-4 high density interconnect
 - WP1-2 3D and high-Z sensors
 - WP1-5 novel materials

Stimulate spin-offs outside the pillar

- Tomographic dignostics of interconnects @ ANKA
- Integration of high-speed data transmission (Pillar 2)

Pillar 1 : The "Helmholtz-Cube"

Vertically Integrated Detector Technology

Who is part of the workpackage?

Helmholtz-Centres:

- > DESY
- > FZJ
- > KIT

Karlsruher Institut für Technologie

Who else will (or could) participate?

External research centres:

Fermi National Accelerator Laboratory (USA)

- IN2P3 Institut national de physique nucléaire et de physique des particules (France)
- Institut Pluridisciplinaire Hubert Curien, Strasbourg
- Laboratoire de l'Accélérateur Linéaire, Orsay
- Max-Planck-Institut für Physik, Munich

- Paul Scherrer Institut, Villigen PAUL SCHERRER INSTITUT (Switzerland)
- Science and Technology Facilities Council, STFC Technology, RAL, Harwell Oxford (UK) Science & Technology Facilities Council

University groups:

> AGH University of Science and Technology, Krakow,

- > Albert-Ludwigs-Universität Freiburg,
- RWTH Aachen,
- Technische Universität Dresden,
- Universitätsklinkum Carl Gustav Carus, Dresden
- > Universität Augsburg,
- Universität Bonn,

- **INFN** Florence,
- Universität Hamburg,
- Universität Heidelberg,
- Universität Wuppertal

Other possible technology partners?

External partners:

Fraunhofer IZM

- > CERN
- > NIKHEF (NL)
- > VTT (FI)

Which technologies and processes are available?

Full 3D integration:

- > CEA-LETI Open-3D (TSVs, microbump bonding
 - CEA
- > IMEC ?
- > MIT Lincoln Lab
- > Tezzaron FaStack (TSVs, wafer bonding)
 - MOSIS, CMP, FNAL

TSVs (Thru-Silicon Vias):

- Fraunhofer IZM / IST / EMFT / ENAS
- IBM (Micron/?)
- > AMS (?)
- > VTT (eniac/KET bridge)
- ST (eniac/KET bridge)

Bump-bonding:

Fraunhofer IZM / IST / EMFT

SEMICONDUCTOR

> Ziptronix

_ _ _ _

Which one to use?

-A**h**tark

CEA-LETI Open-3D Minapad – Medipix-based detector

Process Flow description: TSV last technology

Minapad 2012 | 25/04/2012 | 11

Main drawback: TSV size 60µm Ø

Through Silicon Via (TSV) process

- TSV lithography step: Double side step (Font side / back side alignment) Via Diameter=60µm DRIE Bosch 120µm Silicon etch: Etch rate~ 7.5µm/min Low undercut Slope = 90° Passivation oxide deposition x500 60.0,m SEM cross section of 120µm Temperature limited to 200°C TSV DRIE etched Step coverage = 20% Etch back: removal of the oxide layer at the bottom of the cavity Metal1 pad after oxide removal at the bottom of the via

Minapad 2012 | 25/04/2012 | 13

Back Side signal redistribution

Passivation and Under Bump Metallization

Minanad 2012 | 25/04/2012 | 15

leti

Open 3D[™] technological offer

Open 3D[™] technological offer

leti

Open 3D[™] technological offer / TSV

TSV Gallery

Open 3D[™] technological offer / TSV

TSV morphological & electrical results

TS

AR 1:1

жseē'''dē.'e

AR 2:1

x500'''d0.'074

15V characteristics						
SV geometry	R (mΩ)	C (pF)	Elec. Yield	Insul. (MΩ)	I _{leak} (A)	
TSV _{60 / 80}	15.1	0.57	100 %	> 100	-	
TSV _{60 / 120}	19.1	0.82	100 %	> 100	1.3 10 ⁻⁹ @ 10V 3.1 10 ⁻⁹ @ 50V	
TSV _{40 / 80}	20.1	0.46	> 99%	> 100	-	
TSV _{40 / 120}	30.4	0.63	> 99%	> 100	7.4 10 ⁻⁹	

TSV characteristics

Open 3D[™] technological offer / RDL

Open 3D[™] technological offer / UBM

leti

© CEA. All rights reserved

Open 3D[™] technological offer / Micro-bumps

Open 3D[™] technological offer / Landing micro-bumps

Open 3D[™] technological offer / Pillars

OPEN

Tezzaron FaStack

Products :: IC's Manufacturing :: CMOS 130nm FaStack(R)

TECHNOLOGY:		<u>=Fastack</u>		
CMOS 130nm FaStack (3D-IC I	Integration)			
Met. layer(s):	6 per Tier (Metal 6 is used as bond interface) + TSV (Through Silicon Via)	Main drawback:		
Poly layer(s):	1	Main Ulawback.		
Maximum die size:	2cm x 2cm	Turne encoured delegate of		
Usable cells:	535 digital cells in both Low Power Low VT and Low Power Std VT	Turn-around delays of		
Available I/O:	I/O cell library with digital pads is available for 1.2V/1.5V core 3.3V I/O, 5.0V To			
Temp. range:	-40° C. / +125° C.	0.5a 2a		
Supply voltage:	1.2V/1.5V core 3.3V I/O, 5.0V Tolerant			
SPECIAL FEATURES:	High performance mixed analog/digital process. Two Tiers bonded face-to-face			
APPLICATION AREA:	Mixed Signals analog/digital, Pixels Arrays, Large Digital Designs, System on Chip			
LIBRARIES:	Digital cells: All the standard digital cells plus composed cells (complex gates, arithmetic cells, register files,).			
Megacells:	Single Port RAM, Double Port RAM, ROM.			
RAM/DP-RAM/ROM:	Memory Compilers.			
DESIGN KITS:				
Unix based:	CADENCE, SYNOPSYS, MENTOR, MicroMagic	Silicon (thinned)		
Windows based:	none			
PACKAGING:	All standard packages (DIL, LCC, PGA,).			
TEST:	Contact CMP			
INTERFACE FORMAT:	GDSII, CADENCE	يتلدي متعالدي متعالد ومتعالد		
SPICE parameters:	SPECTRE, HSPICE, ELDO			
DRC, ERC rule set:	Calibre DRC/LVS/3DLVS/PEX, Assura LVS/QRC, Hercules	second a la diversion		
DESIGN SUPPORT:	DRC checking (free for submitted designs)			
PRICES:	Gate Poly	rench Isolation)		
Cell libraries:	Distributed upder NDA	contact & vias) Silicon		
Design kits:	Distributed under NDA			
Prototyping:	See the general CMP price list for prototyping	s (M6, Top Metal)		
Low volume production:	Depends on each specific case; contact CMP			

-

3

/

TURNAROUND TIME:

Typical: TBD

Ulrich Trunk, Pillar 1 Meeting 2012 | Slide 25

Tezzaron FaStack

Commercial from Tezzarons web site....

FaStack® Creates 3D Integrated Circuits (3D-ICs)

Tezzaron's groundbreaking FaStack technology creates fast, dense, highly integrated 3D chips. The heart of the process is wafer-level stacking. Device circuitry is divided into sections that are built on separate wafers using standard processing. Hundreds of thousands of vertical "Super-Contact[™]" connectors are built into the wafers. Finished wafers are metallized with a proprietary bonding pattern. They are then aligned with a precision of 0.5 micron, bonded, and thinned. Additional wafers may be bonded and thinned in turn. The finished stack is diced into individual 3D-IC devices.

Wafer Stacking

Tezzaron FaStack

Commercial from Tezzarons web site....

A variation on the FaStack process stacks individual dies onto an uncut wafer that is then diced into 3D-ICs. The dies may themselves be FaStack 3D-ICs, and the uncut wafer may be a FaStack wafer stack; this "stack of stacks" scenario allows for extremely flexible integration projects.

A Superior Technology

FaStack devices have many advantages over their single-layer counterparts. They are much more dense and their short vertical interconnects allow them to operate at higher speeds with a lower power budget. In addition, FaStack allows disparate elements to be processed on separate wafers for simpler production and greater optimization.

Unlike the separate chips in a "System-in-Package" (SiP) component, FaStack layers are fully integrated into a single IC by a dense system of through-silicon interconnects. FaStack devices match the tight integration of SoC devices while out-doing SiPs for high speed, low power budget, and tiny footprint.

Although other 3D-IC technologies exist, FaStack offers several important benefits:

- > No exotic process requirements
- > Extremely high interconnect density
- > High-precision alignment
- > Low-stress tungsten TSV for reduced thermal mismatch
- > No thin-wafer handling requirements
- > Extreme thinning allows 3D-ICs to fit in standard packaging
- > Real working devices since 2004 with **no** failures to date!

More commercials....

Applications for FaStack®

FaStack's wafer stacking offers benefits to a variety of applications. Sensor arrays, for example, achieve unprecedented density by moving the support circuitry to a different layer than the sensors themselves. "System-on-Chip" (SoC) devices built with FaStack reduce power consumption, footprint, and interconnect delays. Microprocessors built with FaStack incorporate a huge, fast memory cache on a separate layer. FaStack also enables enormous improvements in <u>memory technology</u> and allows seamless integration of differing process technologies. As 3D-ICs move into the mainstream, entirely new products will emerge to capitalize on this technology.

Getting the FaStack® Advantage

Tezzaron is currently exploiting the benefits of FaStack in three ways:

- 1) joint development projects with technology partners and systems designers,
- 2) licensing the production technology to manufacturers, and
- 3) producing our own FaStack-based products.

In the context of WP1 we could (and should) make use of:

- Mixed-signal ASICS (P1 WP2)
- "Aufbau und Verbindungstechnologien" (P1 WP4)
- "Innovative Detektorstruskturmaterialien" (P1 WP5)
- "Detektornahe optische Signalübertragung" (P2 WP3)
- > 3D- und "high-Z" sensors (P1 WP3)

What is our final goal, and how will we achieve it?

Proposal:

A 3D-integrated pixel readout ASIC which should be usable as a...

- Calorimeter readout in HEP
 - trigger capability
- Tracker Readout in HEP and HI
 - Iow radiation length
 - trigger capability
 - analogue information

Imager Readout in PS

- photon counting
- charge integrating analogue information

Outlook (i.e. my personal perspective of it)

