

Modeling of Electrochemical Interfaces in PEFCs

Kourosh Malek M. Eikerling

MMM@HPC Workshop Athens, Greece, Nov. 9th, 2012

Complexity!

Materials Modeling Simulation

Fabrication Characterization

Integration & Testing Commercialization

Processes Market

IX.

Design Challenges

Materials Modeling

Fuel Cell Fundamentals

Polymer Electrolyte Fuel Cells

Design Challenge – Problem of Scales

distance scale, m

Electrochemical interfaces: Pt-C, Pt-W, Pt-O² , C-W, Pt-ionomer, …

M.Eikerling & K. Malek, 2010

Conseil national de recherches Canada

Design Challenge – Problem of Scales

distance scale, m

M.Eikerling & K. Malek, 2010

Modeling Fuel Cell Materials

CL microstructure formation

CL fabrication process

`anada

Apprehensions and controversial issues

Methodology

Continuum equations

 $> 0.01 \, \text{m}$ continuum

 $0.01 - 10$ um Meso-scale

Classical mechanics

 $5-50$ nm **Molecular**

Atomistic

Quantum mechanics

Modelling approaches **pros and cons**

Modeling of C-Pt-Nation interfacial structure CGMD

- **(+) Representing the ionomer network and more realistic structure of CL**
- **(-) Highly simplified representation of sidechains**
- **(-) Uncertainty of actual parameters and hydration energies**

MD on extended surface

- **(+) Hopefully more accurate representation of sidechains and more accurate hydration energies**
- **(-) Does not consider 3D network of ionomer**
- **(-) Effect of long-range interactions on nano-scale morphology of nafion**

Alternatives

• **Hybrid CGMD-AMD or implementing (mixed) atomistic models in CGMD**

Advanced CL design

Multi-scale coupling scheme of Pt/C *Methodology* **CG model**

Methodology CGMD simulations

Systematic meso-scale simulations Coarse-grained model of Nafion, Coarse-Grained Molecular Dynamics 20-unit oligomer, length ~ 30 nm CF_2CF_2 \leftarrow CF_2CF_2 CF_2 CF_1 **Parameterization** $O-CF₂CF₂$ **Modified MARTINI FF Solvent** σ = 0.47 nm **Continuum dielectric** ϵ /K=674-217 ~5 **nm Sidechain** supra-attractive to supra-repulsive **Backbone** Pt/C **Validation Boltzmann-inversion (MD vs. CGMD) Radial Distribution Functions (RDFs) ~ 17 nm Experiment** $g(r) = \exp(-V(r) / k_B T)$ $(r) = \exp(-V(r) / k_B T)$
 $(r) = V^{i}(r) - k_B T \ln(g_{atom}(r) / g^{i}(r))$ W-adsorption $V^{i+1}(r) = V^{i}(r) - k_{B}T \ln(g_{atom}(r) / g^{i}(r))$ Phases densities

Council Canada

Coverage on C

Nafion-water structure

National Research
Council Canada Conseil national de recherches Canada

PSD: role of Pt

Interfacial structure

Catalyst layer of PEFC

Interfacial structure and processes

Density profiles extended surface

de recherches Canada

Council Canada

aphite sheet 11) w/o charge $Pt(111)$ w/ charge

Water Back bone Side chain GC Pt

Slightly thicker Nafion film on Pt compared to that on graphite sheet. Most of S atoms are adsorbed on Pt. $\text{High H}_3\text{O}^+$ concentration on Pt in the case without surface charge. ligh water concentration on Pt.

T. Mashio, K. Malek et al. J. Phys. Chem. C, 2010

Parameterization

Parameterization

Constructing effective FF

Based on structural and thermodynamic properties

- **Matching thermodynamic quantities**
- **Boltzmann inversion (mixed or separate AA-CG)**
- **Force matching (adaptive, mixed AA-CG)**

Effect of wettability

Water adsorption **validation**

Validation

Parameterization **Boltzmann-inversion**

$$
g(r) = \exp\left(-\frac{V(r)}{k_B T}\right)
$$

$$
V(r) = -k_B T \ln(g_A(r))
$$

$$
V^{i+1}(r) = V^i(r) - k_B T \ln\left(\frac{g_A(r)}{g^i(r)}\right)
$$

Parameterization **mixed AA-CG**

$$
\vec{F}_{i,m}^{CG} = \sum_{j \neq i} f_{ij}^{CG} \left(\left| \vec{R}_{ij,m}^{CG} \right| \right) \frac{\vec{R}_{ij,m}^{CG}}{\left| \vec{R}_{ij,m}^{CG} \right|} \quad \varepsilon = \frac{1}{3MN} \sum_{i=1}^{N} \sum_{m=1}^{M} \left| \vec{F}_{i,m}^{ref} - \vec{F}_{i,m}^{CG} \right|^{2}
$$

S.Izvekov, G. A. Voth, 2005, 2006

National Research Conseil national de recherches Canada

Extended surface **configurations**

Parameterization **mixed AA-CG**

Challenge:

- **Creating a seamless connection**
- **between low- and high resolution zones**
- **Multiple-time step algorithm**
- **Solution: mixed-resolution Hamiltonian**
- **Bead size from 0.37 nm (UA) to 0.47 nm (C, Pt)**

Pt/NbxOy system

Li Zhang, L. Wang, Chris M.B. Holt, Kourosh Malek, Titichai Navessin, Michael H. Eikerling, David Mitlin, JPCC, 2010*.*

National Research Council – Energy, Mining, Environment – Vancouver

Methodology

• **Density functional theory (DFT) calculations using the Vienna Ab-initio Simulation Package (VASP).**

• **The non-local exchange and correlation energies were calculated with the Perdew-Wang (PW91) functional within generalized gradient approximation (GGA).**

• **The total energy calculations during relaxation procedure were done with the linear tetrahedron method with Blöchl correction**

Catalyst layer of PEFC *Non-carbon support materials*

$E_{ad} = (E_{\text{tot}} - E_{\text{sub}} - E_{\text{Pt}})/N$

Conseil national **National Research** Council Canada de recherches Canada

Non-carbon support materials

Pt/NbO[111]

Pt/NbO₂[100]

Pt/Nb₂O₅[001]

L. Zhang, Liya Wang et al. JPCC, 2010

Non-carbon support materials

L. Zhang, Liya Wang et al. JPCC, 2010

Non-carbon support materials

Pt/Nb₂O₅[001]

Pt/NbO₂[100]

Pt/NbO[111]

To avoid C-corrosion at high-T, High-Pot. Non-carbon support, improving stability of Pt on support materials (nonconventional CL design)

- Effects of oxygen incorporation on stability, electronic structure, and electrochemical activity of Pt|Nb*x*O*y* systems.
- A transfer of electronic charge density from Nb, NbO, and NbO2 to Pt and a reverse case for Nb2O5.
- ORR activity does not follow the trends predicted by the dband model.

L. Zhang, Liya Wang et al. JPCC, 2010

Pt/NbO² /graphene system

Li Zhang, L. Wang, Chris M.B. Holt, Beniamin Zahiri, Kourosh Malek, Titichai Navessin, Michael H. Eikerling, David Mitlin, Energy & Environmental Science, 2012*.*

3D Arrays of Pt and Pt/NbO² Functionalized CNTs

• Grow anchored 3D arrays of CNTs via CVD. I_G / I_D is 1.60, indicating good quality of as-prepared CNTs but with defects.

• Conformal coating of Pt or $Pt/NbO₂$ on the CNT arrays via PVD.

• *Geometrical thickness NbO² layers were 10 and 2 nm. The thickness of these layers when covering the CNTs was roughly 1 and 0.2 nm.*

• Platinum films mass loadings of 0.03, 0.09 and 0.15 mg/cm² (15, 45 and 75 nm by geometrical area).

• Electrochemical measurements were performed using a standard rotating disk electrode (RDE) system. Solutions were prepared from 70% HClO $_A$ (optima grade, Fisher Scientific) and Milli-Q water.

• A helical Pt wire counter electrode and a Cl-free Hg/Hg₂SO₄ reference electrode

• ESA of Pt, i.e. A_{real} was determined by averaging the charge of the $H_{ads} (Q')$ and $H_{des} (Q'')$ peaks using $\mathsf{A}_{\mathsf{real}}$ = $\mathsf{Q}_{\mathsf{H}}/\mathsf{qH}_{\mathsf{upd}}$, where $\mathsf{qH}_{\mathsf{upd}}$ is 210 $\mu\mathsf{C/cm^{2}}$

True substrate surface area vs. the geometric surface area ~ 12.

Model System

Initial structure Relaxed structure

$$
E_{\text{ad}} = \frac{1}{N} \Big(E_{\text{NbO}_2/\text{CG}} - E_{\text{CG}} - E_{\text{NbO}_2} \Big) \quad E_{\text{ad}} = -0.34 \text{(eV per atom)}
$$

- **Pt is physisorbed on graphene with adsorption energy < -0.05eV**
- **-0.03eV for Pt(111)/graphene system**
- **NbO2 has a much stronger chemisorption-type interaction with graphene**

rotected from further oxidation to the

Nb₂O₅

ince structure of the NbO₂/graphene bilayer system with the optimized geome

ircles indicate C, Nb and O respectively.
 $\Delta \gamma = \gamma_{\text{Nbo}_2} + \gamma_i - \gamma_g \leq 0$ Graphene is fully wetted by NbO2, mitigating the corrosion of graphene. $NbO₂$, on the other hand, is effectively protected from further oxidation to the equilibrium $Nb₂O₅$

Top view of the atomic structure of the NbO² /graphene bilayer system with the optimized geometry. Gray, cyan and red circles indicate C, Nb and O respectively.

mic structure of the NbO₂/graphene bilayer system with
ircles indicate C, Nb and O respectively.

$$
\Delta \gamma = \gamma_{\text{Nbo}_2} + \gamma_{\text{i}} - \gamma_{\text{g}} \leq 0
$$

Surface energy of add-layer + Interfacial energy - Surface energy of support

$$
\Delta \gamma = \gamma_{\text{Nbo}_2} + \gamma_i - \gamma_g \leq 0
$$

of add-layer + Interfacial energy - Surface energy of support

$$
\gamma_{\text{Nbo}_2} = \frac{1}{2A} \left(E_{\text{Nbo}_2}^{slab} - E_{\text{Nbo}_2}^{bulk} \right)
$$

$$
\Delta \gamma = -12 \text{eV/nm}^2 < 0
$$

ional Research Council Canada de recherches Canada

Electronic structure

- The difference in Fermi energies between graphene (-4.5) eV) and the $NbO₂$ monolayer (-5.64)
- **p** • Net positive charge at graphene and a complex charge distribution in the $NbO₂$
- Due to the **electron transfer from graphene to NbO2** the number of electrons at the graphene sheet decreased by 0.01 per carbon atom.

Plane-average charge density of NbO² /graphene system as a function of coordinate along surface normal

0.01 per carbon atom.
\nne-average charge density of NbO₂/graphene system as a function of coordinate along surface normal
\n
$$
\Delta V_{\mathsf{p}}(z) = V_{\mathsf{Nbo}_2/\mathsf{g}}(z) - V_{\mathsf{Nbo}_2}(z) - V_{\mathsf{g}}(z)
$$
\n(2)

The plane-averaged electron density (e/Å) of **NbO2/graphene bilayer system** - **the isolated NbO2 layer** - **bare graphene**

DOS .

• **A good wetting between NbO² and graphene.**

The two sublayers exhibit a strong chemisorption-type interaction.

- The graphene sheet injects a significant amount of mobile π electrons into **the conduction band of NbO²**
- **Further work: electrocatalytic properties of the graphene/NbO2/Pt system**

Highlights

- **Evaluated effects of oxygen incorporation on stability, electronic**
- **Structure, and electrochemical activity of Pt|Nb***x***O***y* **systems.**
- Predicted a transfer of electronic charge density from Nb, NbO,
- and NbO2 to Pt and a reverse case for Nb2O5.

• **Highly corrosion-resistant electrocatalysts utilizing metal oxide coated carbon nanotubes as a support for Pt** Gained further insights into changes in wetting properties, stability and electronic structure introduced by the insertion of the thin NbO2 film.

Modeling-based Design

Ultrathin Catalyst Layers

Acknowledgeme

SFU

National Research Conseil national Council Canada de recherches Canada

K. Malek, PhD MBA

NRC-EME

4250 Wesbrook Mall

Vancouver, BC, Canada

kourosh.malek@nrc.gc.ca

Simon Fraser University

8888 University drive

Burnaby, BC, Canada

kmalek@sfu.ca

National Research **Council Canada**

Conseil national de recherches Canada

