

Multi-PMT Optical Modules

for application in harsh and remote environments

HAP Workshop: Advanced Technologies University of Mainz, 2. Feb. 2016

living.knowledge WWU Münster

Alexander Kappes

Institut für Kernphysik

Target applications

Detection of Cherenkov radiation of charged particles

Examples of target experiments

- Neutrino telescopes (IceCube, KM3NeT, BAIKAL)
 - high-energy astrophysics
 - MeV supernova neutrinos
 - neutrino oscillation at GeV energies (oscillation parameters, mass ordering)
- Large-volume-tank detectors (e.g. Hyper-K)
 - neutrino oscillations in sub-GeV to GeV range (CP phase, mass ordering)
 - MeV supernova neutrinos, solar neutrinos
 - proton decay
- Neutrino detectors in lakes (CHIPS)
 - CP phase in neutrino oscillations

KM3NeT (artist's view)

Desired properties of optical modules

- Large effective area
- Single photon detection and high dynamic range (> several 100 p.e.)
- Good photon separation (photon counting)
- ns timing
- Low background
- Directional information (with 4π sensitivity)
- 10+ years of maintenance-free operation under (and/or)
 - high pressure (up to 600 bar),
 - low temperatures (-45°C),
 - corrosive environments (salt water)
- Low power consumption (few Watts)
- Cheap (« 10 kEUR)

Optical modules in neutrino telescopes

Until recently, single large PMT in glass sphere looking downwards (DUMAND, BAIKAL, AMANDA, ANTARES, IceCube)

- Advantageous features
 - in particular sensitive to up-going neutrinos (main target in the beginning)
 - only one readout channel (electronics complexity)
 - price per photocathode area used to be lower for large PMTs
- Disadvantages
 - no directional sensitivity (direction reconstruction)
 - « 0.5 of solid angle covered (sensitivity to down-going v)
 - ambiguities in photon counting (energy determination)
 - no local coincidences on single module (e.g. for background suppression)

Optical modules in neutrino telescopes

Until recently, single large PMT in glass sphere looking downwards (DUMAND, BAIKAL, AMANDA, ANTARES, IceCube)

- Advantageous features
 - in particular sensitive to up-going neutrinos (main target in the beginning)
 - only one readout channel (electronics complexity)
 - price per photocathode area used to be lower for large PMTs
- Disadvantages
 - no directional sensitivity (direction reconstruction)
 - « 0.5 of solid angle covered (sensitivity to down-going ν)
 - ambiguities in photon counting (energy determination)
 - no local coincidences on single module (e.g. for background suppression)
- → multi-PMT optical modules aim at improving on these

Multi-PMT optical modules

- Already thought of in the DUMAND era (1979) and realized in NEVOD!
- First "modern" version in KM3NeT (Kavatsyuk et al, NIM A 695 (2012))
 - PMTs still best choice for low background applications
 - today, price per photocathode area for 3" PMTs < 10" PMTs (in mass production)
 - advances in electronics / data transmission
- Successful in-situ application in KM3NeT

NEVOD module

5

Successful in-situ application in KM3NeT

5

- Successful in-situ application in KM3NeT
- Under development for IceCube-Gen2 (mDOM) (alternative to baseline design with single, large PMT)

IceCube mDOM

5

Challenges for multi-PMT modules

- Tight available space and power constraints
- Large number of readout channels
- Production of large number of small (3") PMTs (up to several 100k)
- Availability of PMTs with suitable properties

Photomultipliers

• Available PMTs with adequate properties (based on KM3NeT criteria)

Hamamatsu R12199-02

- photocathode Ø = 80 mm
- length = 98 mm / cylinder Ø = 52 mm
- TTS (FWHM) = ~3.5 ns
- peak-to-valley ratio = ~3.5
- gain ~5×10⁶ @ ~1100 V

Hamamatsu R12199-02 HA

improves dark count for cathode @ -HV

• Potential other manufactures: HZC (China), MELZ (Russia)

ETEL 9320 KFL

- photocathode Ø = 87 mm
- length = 95 mm / cylinder Ø = 52 mm
- characteristics under investigation

W///// Miinster

7

Mechanics: Pressure vessel

- Spherical glass vessels (borosilicate glass) routinely used in deep-sea exploration
 - transparent to optical light
 - high compression strength (~1400 N/mm² (MPa))
 - typ. sizes 13", 17" with thickness 15-20 mm
 - inert to salt water
 - low price
- Challenges for usage in ice: max $\emptyset \lesssim 14$ " (bore hole size)
 - → additional space for electronics needed
 - 14" sphere with cylindrical extension (developed with Nautilus)
 - glass thickness: 14 mm
 - pressure rating: 700 bar (to be tested)
 - Production with same technique as
 "standard" glass spheres → comparable low price

© Nautilus MARINE SERVICE GmbH

Mechanics: Transmissivity

- Cherenkov photon spectrum ~ $1/\lambda^2$ → transparency in UV range important
- Significant differences between glasses of same material (borosilicate glass)
- But also radioactive contamination important → optical background

Mechanics: PMT holding structure

- Complex structure with e.g.
 - O-ring cavity (sealing and PMT fixation)
 - distance holders for "gel-coating" of PMT
- Nowadays, fast and well-priced production via laser sintering (type of 3D-printing)
- Allows for mounting of reflective cones

IceCube mDOM

Westfälische Wilhelms-Universität Münster

Effect of reflectors on angular acceptance

 Reflectors significantly increase directionality of PMT

living knowledge

Electronics: General considerations

- Detectors at remote locations (deep sea, South Pole)
 - \rightarrow power consumption crucial factor
- Particulate important for IceCube
 - power (+ comm.) through ~20 copper wire pairs
 - power usage limited by voltage drop from surface
 - → max. ~3.4 W per DOM (3 DOMs per wire pair)
 - → ~60 mW per PMT (readout/digitization + HV) (mainboard, power supply etc. subtracted)

IceCube Coll. PINGU LOI arXiv:1401.2046 (2014)

DOM electronics: Generic block diagram

ving, knowledge VVVU Münster

DOM electronics: Generic block diagram

Electronics: PMT base

- Requirements
 - individually adjustable HV (~1000 V)
 - low-power
 - compact design
- KM3NeT design (Nikhef) (also used for IceCube-mDOM)
 - Cockroft-Walton circuit
 - power consumption 3-4 mW
 - fits on single side of PMT base

Timmer, 2010 JINST 5 C12049

iving knowledge

Electronics: Readout schemes

- Standard signal digitization: sampling of amplitude in fixed interval (IceCube baseline DOM: flash ADC with 14 bit, 250 MHz)
 - → disadvantage: high power consumption, size
- Alternative: Time-over-Threshold (ToT)
 - shape of single photon pulse known (amplitude variable)
 → sample with comparator (time-over-threshold, KM3NeT)
 - advantages: low-power, small footprint (fits on backside of base)
 - disadvantage: ambiguities for fast consecutive signals
 (particularly the case for IceCube because of large scattering in ice)

15

Electronics: Multi-comparator readout

- Multi-comparator design for IceCube mDOM
- Challenges: limited space (backside of base) and power (~50 mW)
- Two-fold strategy
 - Discrete design: allows for ~4 comparators (under development @ DESY-Zeuthen)
 - ASIC design: 63 comparators with 6 bit encoder (under development @ LTE Univ. Erlangen)
- Output: pseudo-digital signal (single-ended)
 - \rightarrow time-stamping in FPGA with 250–500 MHz

mDOM 63-comparator ASIC design

Pulse reconstruction with 63 discriminators

- Encouraging first results
 - Input: 10 pulses, mean amplitude 3 pe
 - Δ Charge < 1%
 - Δt (first pulse) \approx 1 ns

Summary

- PMTs still first (only) choice for low-background, single-photon detection scenarios
- Multi-PMT optical modules provide several attractive advantages compared to "standard" single-large-PMT modules (directionality, increased photocathode area, improved photon counting, local coincidences)
- Challenges: tight space and power constraints + costs
 - mechanics for large number of PMTs
 - readout of large number of channels, digitization of complex signals
- In KM₃NeT, 31 PMTs with individual, single time-over-threshold readout
 → successfully tested in situ (deep sea)
- IceCube-Gen2 aims at advanced version for application in the deep ice
 - ASIC development for 63-comparator readout of 24 PMTs
 - optimized UV sensitivity (pressure vessel, optical gel) and mechanics
 - with moderate modification also applicable in other experiments (Hyper-K, CHIPS . . .)

Bundesministerium für Bildung und Forschung

Photomultipliers

Requirements (KM3NeT)	
quantum efficiency @ 470 nm	> 20%
transit time spread (σ , FWHM)	< 2 ns, < 4.6 ns
gain	> 2 · 10 ⁶
supply voltage	< 1400 V
dark count rate @ 15°C	< 1.5 kHz
peak to valley ratio	> 3
length	< 120 mm
power consumption incl. base	< 4 mW

PMTs: HV polarity and background

Dark-count rates

Glacial ice very radioactive clean

 \rightarrow module itself dominant background source

Sources for dark count rate

- Radioactive decays (e.g. K40) (glass of PMT and pressure vessel)
- Thermal emission from photocathode
 → low temperatures
- Field effect emission from PMT electrodes
 → not too high voltages/gains

Flyckt, S.-O. & Marmonier, C. PHOTOMULTIPLIER TUBES principles & applications

Dark-count rate reduction from ~500 Hz @ 20° C to 100–150 Hz < -30° C (thresh. ~0.3 pe, -HV)

(comparison: standard IceCube 10" PMT: ~300-400 Hz @ 0.25 p.e.)

Controlling the dark-count rate with negative HV Hamamatsu R12199-02

photocathode area in silicone gel (oil)

(higher costs)

Effective area from GEANT4 simulation

PMT form factor

- Pressure vessel diameter limited to 14" (size of borehole)
- Length (including vacuum seal) and diameter of PMT critical parameters
 - → even moderately shorter PMTs highly beneficial

Hamamatsu R12199-02 (units in mm)

owled nster

Westfälische Wilhelms-Universität Münster

PMT base

- HV generation on base; copied from KM3NeT (Cockcroft Walton design, Nikhef)
 - low power (3–5 mW)
 - small adaptions due to new board shape
- Front-end electronics for signal processing on backside

KM₃NeT: HV generation

New optimized board shape with HV circuitry

iving knowledge

Backside with front-end electronics

Layout impressions

Cockcraft Walton implemented on Topside:

Voltage potential dependent clearance check and ground plane calculation:

Full 3d design with clearance rules for optimized room usage

Testboard Top view

Testboard Top view

Microcontroller Freescale KL03 (in Delivery)

- ID
- Communication
- Monitoring
- DAC?
- Cockcraft Walton Control?

Low Power DAC

- LT1662 (in Delivery)
- Ref Voltage for A/
 D Conversion
- HV Control
 Voltage

Preamplifier

- Based on Current Feedback Opamp OPA2683
- Evaluation of
 - Inverting voltage Amplifier
 - Non-inverting voltage Amplifier
 - Charge Amplifier
- Test-PCB

First results Preamplifier

- Frequency response out 19 X: 2e=05 Y: 19.08 18 17 X: 7.6e+07 Y: 16.2 Gain in dB 16 15 14 13 12 10⁵ 10* 10⁶ 10' 10 Frequency in Hz
- Power Consumption <10mW at ~75MHz Bandwidth

Stefan Lindner

Preamplifier Pulse response

Discrete layout for single ToT readout

- Low power & tiny footprints
- Micro controller
 - Communication
 - Control of DACs (HV, threshold ToT)
 - PMT-Status
 - Calibration
- Low Power Charge Amplifier & Comparator

Test setup

Load	Consumption
HV generation	~5 mW
Microcontroller	<< 1 mW
DACs	~10 µW
Charge Amplifier	~5 mW
ТоТ	~5 mW
Signalling to mainboard	??

Electronics: Baseline readout IceCube mDOM

- 4 ToTs discrete discriminators
- Measured power consumption: ~40 mW per base for 0.001 1 MHz toggle rate (expected rates ≤ 0.05 MHz)

© Axel Kretzschmann (DESY)