PMT Candidates for SSD

Challenge for PMTs in air-shower detection highest linear dynamic range

Karl-Heinz Becker, Karl-Heinz Kampert, Alex Kääpä, Christian Pauly, Sven Querchfeld, Julian Rautenberg

HAP Advanced Technologies Meeting Mainz, Feb. 2016

bmb+f - Förderschwerpunkt

Astroteilchenphysik

Großgeräte der physikalischen Grundlagenforschung

s.querchfeld@uni-wuppertal.de

Auger Prime SSD

- Scintillation detector on top of surface detector
- Goal: More precise composition analysis by measuring em-component
- $\bullet~2\times2\,\mathrm{m}^2$ plastic scintillator
- Read out with WLS fibers (Kuraray Y11 / SaintGobaint BCF-91A)
- 48 fiber 'cookie' to photon detector

Photon Detector Requirements

- Photon detector for scintillating fiber
- Main request: high linearity
- Up to 20.000 MIPS?
- MIP signal of about 12PE expected
- Timescale of pulses O(100ns)
- Low power consumption (CAEN HV module 2100V, $110\mu\mathrm{A}$)

Range	Intent	Dynamic range																			
bits		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
LowGain	MIP		AnodeX32																		
HighGain	Showers								Anode/4												
lpeak (mA)		0.0006			0.01			0.1				1.25			10			160			
Vpeak (mV)		0.03				0.5			4				62.5			500			8000		
Npart (MIP)		0.07				1.2			10				156			1250)			2000	0

Photomultiplier Candidates

	Ham. R9420(-100)	Ham. R8619			
Size	1.5"	1"			
Photocathode	(super-)bialkali	bialkali			
min. Effective Area [mm]	Ø 3 4	Ø 22			
Dynode Structure/Stages	lin. focused/ 8	lin. focused/ 10			
Gain	$3.7 imes10^5$	$2.6 imes10^6$			
Supply Voltage [V] typ.	1300	1000			
max.	1500	1500			
Dark Current [nA] typ.	10	2			
max.	100	15			
Cathode Sens. [mA/W]	110	90?			
$Q.E{at peak wavelength}$	27% (35%)	27%?			
Rise Time [ns]	1.6	2.5			

S. Querchfeld (Uni Wuppertal)

Photomultiplier Candidates

Combining best of both PMTs: R11920-100

- Developed by CTA/Hamamatsu
- Dynode structure of R8619
- R9420-100 tube, super-bialkali
- Low afterpulsing

For SSD: Too complicated to mount cookie

S. Querchfeld (Uni Wuppertal)

QE Measurement

- Measurement in reference to a calibrated photodiode
- Super-bialkali benefit insignificant > 500 nm
- S. Querchfeld (Uni Wuppertal)

QE Measurement

- $\bullet\,$ Emission spectrum for two different WLS fibers $> 500\,\text{nm}$
- $\bullet\,$ Lower wavelength (< 500 nm) of Kuraray Y-11 favorable for PMTs
- S. Querchfeld (Uni Wuppertal)

black circle r=5.65mm radius (ca. 100mm²), red r=3.9mm (ca. 48 mm²)

S. Querchfeld (Uni Wuppertal)

PMT Candidates for SSD

01.02.2016 6 / 18

Linearity R9420-100

7 / 18

Linear relation between charge and light

- Important for energy estimation
- Depends on voltage divider
- Measured with calibrated attenuation filters
 - Resistor ratio optimized

S. Querchfeld (Uni Wuppertal)

Linearity R9420

For SSD test setup:

- Extend linearity measurement to $O(10^5)$
- Linearity measured with different attenuation filters
- Calibration by single photon peak
- Test new dividers
 - FD base, active
 - ► Hamamatsu/Torino Base w/ low power consumption, passive
- Compare PMTs selected for high linearity to standard batch
- Setup for constant light and pulses
- 3 Setups (2 @ BUW, 1 @ Lecce):
 - ► Auger FD test-setup, variable pulse length >100ns
 - ▶ CBM SPE setup with <100ps laser-pulses
 - ▶ 2-LED setup, similar to Hamamatsu, only deviation for x2

SPE Measurement

- SPE measurement with n-XYTER
- light attenuated for small fraction of single photon hits
- 211-base has higher/steeper gain than FD base

Linearity Tests, R9420 - 4-1.5...

R9420 1300V VolDiv4-1.5-...

- Combination of different attenuation filters
- SPE position 'arbitrary'
- SPE gives gain
- Saturation visible?

S. Querchfeld (Uni Wuppertal)

Linearity Tests, R9420 - 2-1-1...

- Combination of different attenuation filters
- SPE position 'arbitrary'
- SPE gives gain
- Saturation visible?

S. Querchfeld (Uni Wuppertal)

PMT Candidates for SSD

01.02.2016 11 / 18

Linearity tests, R9420

- First rough calculation
- Despite different gain, 'saturation' at same level
- No favorable base identified yet
- $\bullet\,$ Further investigation on HV/Gain dependence
- Improve/automate test setup

Linearity tests, R8619 - 3-1

R8619 1200V

- First test of R8619
- Even higher gain (10-stages)

S. Querchfeld (Uni Wuppertal)

Pulse Stability

- Too small bleeder current for passive base
- Additional supporting capacitor at 4th and 5th dynode?
- Active base still capable but needs to be modified to match $I < 100 \mu {\rm A}$
- Afterpulsing for R9420 visible

S. Querchfeld (Uni Wuppertal)

Integrated Base by ISEG

- Similar 8-stage PMT XPS 2960
- Used by H.E.S.S. for years
- Low power consumption
- Cost attractive (<60€)

Integrated Base by ISEG

 stabilized by direct conection to stages of the Cockcraft-Walton

Integrated Base by ISEG

Technical Data:

Cathode voltage Vout		0 to 1600 V							
Stability ΔV _{OUT}		<1 * 10 ⁻⁴							
Temperature coefficient		<5 * 10 ⁻⁵							
Ripple and noise		<10 mV _{P-P}							
Power Dissipation P_{v}		400 mW ⁾¹ at V _{OUT} =1600 V							
Power requirements		+12 V (< 25 mA) -5 V (< 25 mA)							
Analog control Input voltage V _{SET}		0 4 V	(V _{out} ⇒	0 to 1600 V)					
Analog control	V _{MON}	0 4 V	$V_{OUT} \Rightarrow 0$ to 1	600 V	Ri = 10 kΩ				
Output voltages	I _{MON}	0 5 V	I _V = I _{Voltage Divid}	$_{er}$ + $I_{PMT} \Rightarrow 0$ to 200 μ A	Ri ~ 150 kΩ				
Digital remote control	HV-off-1	Input 1	TTL-Level:	Low = HV-off					
	Input 2	Input 2 High or nc = HV-on ¹²							
	Output TTL-Level: High = V _{OUT} according V _{SET}								
				Low = regulation error					
Protection	Current limit ³³								
		Voltage limit ⁾⁴							
		Monitoring Power requirements							
³¹ : I _{PMT} is generated at V _{OU} by 20 to 50 mW accord	π with a eff ing to I _{PMT} .	iciency at	~ 75%. The To	otal Power Dissipation o	an increased				
$^{\rm J2}$: Attention! If you shut on $V_{\rm OUT}$ with this signals, the rate of change of $V_{\rm OUT}$ is ~ 5 V/ms.									
³³ : Integral Output current is limited at 200µA									
⁾⁴ : V _{OUT max} = 1700 V ; inde	pendent lir	nit							

S. Querchfeld (Uni Wuppertal)

Summary & Outlook

- Hamamatsu PMTs R9420 and R8619
- R9420 slightly less homogeneous
- Active base with tapered divider build for R8619 & R9420
- Tapered divider suitable for single photon/MIP signal
- Pulses <100ps linear up to 3k PE
 - Test setup to be improved and automated
- \bullet Pulse-length longer than 100 ns \rightarrow active base
- Base with integrated HV (optimized stability) by ISEG as used e.g. by H.E.S.S. an attractive option!

BackUp Slides

Pulselength close to axis?

Pulselength close to axis?

Linearity R8619

- tapered voltage divider for improved linearity
- low power consumption \rightarrow active base

Linearity R8619

- tapered voltage divider for improved linearity
- low power consumption \rightarrow active base

S. Querchfeld (Uni Wuppertal)

Single Photon Pulse R8619

• single photon spectra for different voltages

604248

799.6 ± 3.6

- tapered, active voltage divider
- pile-up at 1400V

χ² / ndf 1255 / 163

Mean 336.6 ± 0.5

Sigma 110.3 ± 0.6

Constant

ADC values (baseline subtracted

single photon R8619 1050V

single photon R8619 1200V

ADC values (baseline subtracted)

ADC univers (has sized as a sized

MIP Signal R8619

300

Linearity R8619

Linearity measurement at 1050V

S. Querchfeld (Uni Wuppertal)

Multi-Photon Pulse R8619

ProjectionY of binx=65

- mixed signal chip
- 128 channels
- 18ns fast shaper
- 140ns slow-shaper

n-XYTER ASIC

- process: AMS $0.35 \mu m$ CMOS
- programmable dead time
- dynamic range: 120000e
- Timing resolution 2-3ns
- self triggered, data driven de-randomizing, sparcifying readout at 32MHz

n-XYTER Architecture

Pulser Calibration

