

Precision lab measurements on IceCube optical modules

Martin Rongen | III. Physikalisches Institut RWTH Aachen | HAP Workshop Advanced Technologies 2016

IceCube

- In-ice Cherenkov telescope at the geographic South Pole
- 5160 DOMs containing a 10" PMT each
- Construction: 2005 2011
- Discovery of extra-terrestrial neutrinos: 2013

Calibrating the experiment

Going beyond what is required/sensible for the detector calibration...

Contents:

• The hardware, the lab

Selected properties:

- Effects of the first dynode on ...
 - ... the gain
 - ... P2V ratio
 - ... the late pulse probability
- Recovering PMT saturation
 - When?
 - How?

Nothing which is not described in the PMT bible, but still a good reminder.

PHOTOMULT	PLIER TUBES
Basics and Applica	tions
THIRD EDITION (Edition	3a)
\bigcirc	
PHOTON I	S
OUR BUSI	NESS
Нама	MATSU

The IceCube PMT and ASIC

10" large area PMT 10 stage Box81 inc. dynade ebait

Hamamatsu R7081-02 (datasheet):

- 10 stage Box&Line dynode chain
- 1.5 5% late pulsing
- Linear to 70 mA at 2%
- Contained in fully independent DOM unit
- Operated at gain 10⁷

The IceCube ASIC:

Analog Transient Waveform Digitizer (ATWD) by LBNL

- 4 channels, 128 sample linear capacitor array each
- 0.3 3.5 analog input range
- 0.3 2.0 GHz sampling speed
- Acquisition triggered by comparator, digitization initialized by local coincidence \rightarrow trigger
- 40 MHz, 10 bit ADC $\rightarrow\,$ ping-pong to reduce dead time to < 0.1‰

18y old ASIC

The Madison lab for absolute calibration

Available sources:

Pulsed \rightarrow waveform DAQ

- 50ps laser with filter: ~3% chance of 1 PE
- Laser without filter: ~75 PE per pulse
- Flasher LEDs
 - High brightness
 - 30 ns
 - 1.25 us

Continuous \rightarrow **scalars**

- LEDs:
 - 400 nm
 - 450 nm
 - 360 nm

Source End

DOM/PMT in water tank

http://arxiv.org/abs/1502.03102

Rotating the DOM

Martin Rongen | III. Physikalisches Institut RWTH Aachen | HAP Workshop Advanced Technologies 2016

Understanding the asymmetries

9

10

PMT saturation

PMTs can not deliver arbitrarily large instantaneous currents (space charge effects at the dynodes)

10% non-linearity reached at 50mA (31 PE/ns)

http://arxiv.org/abs/1002.2442

→ the late pulse contains a constant fraction of the arriving photons \rightarrow recover ~ a factor 40 in pulse linearit

(But the late pulse fraction needs to be calibrated for each PMT individually...)

Thank you for your attention! Questions are welcome

Backup

ATWD pedestals (both of them...)

ADCs work best at the mid-point of the digitization range. \rightarrow A bias voltage is added to the analog signal which needs to be subtracted off. Easy!

Each capacitor in the ATWD has a slightly different parasitic charge / capacitance. The resulting constant pattern needs to be subtracted from the waveforms.

The pattern changes slightly with temperature / time. Pattern is validated with CPU clock trigger waveforms.

Ask Marius if you want to know what can go wrong here ;)

DAQ timing sequence

https://docushare.icecube.wisc.edu/dsweb/Get/Document-28424

Confusing stuff. There might be details wrong here!!

19

SPE charge spectra

