

Precise time synchronisation of autonomous radio stations at the Pierre Auger Observatory

Qader Dorosti for the Pierre Auger Observatory

Karlsruhe Institute of Technology (KIT), Institut für Kernphysik, Karlsruhe, Germany

Outline:

- Motivation
- Pierre Auger Observatory
- Time Calibration
- Results

Take home message: Time resolution < 2 ns

Cosmic-ray physics

Plot by R. Engel & T. Huege

Pierre Auger Observatory

Layout of the Pierre Auger Observatory

Argentina

Surface Detectors (SD)

- 1660 Cherenkov tanks
- 100% duty cycle
- High angular resolution

Fluorescence Detector (FD)

- 27 telescopes
- 15% duty cycle
- Composition measurement

Auger Engineering Radio Array (AERA)

4 02-02-16 Qader Dorosti - time calibration of autonomous radio stations

qader.dorosti@kit.edu Institut für Kernphysik, KIT Campus Nord

AERA stations

Log-periodic dipole antenna (LPDA)

Butterfly antenna

1 GPS clock / station for timing
Wireless communication antenna
frequency range: 30-80 MHz
Differential GPS: position accuracy better than 10 cm

HAP supports of radio detection of cosmic rays

Radio emission mechanism

Radio detection principle

To exploit the full potential of radio measurement timing of **1 ns** is ideal

Time calibration of AERA

Beacon transmitter

Principle of time calibration

4 sine waves beat repeats every 1.1 μs < AERA time trace length, i.e. 10 μs

compare arrival time of beat with expected propagation time

calculate relative time difference

Performance of the time calibration

event time (days since 9 Aug 2014, 00:00 UTC)

Strong fluctuations of a few 10 ns between stations: due to **GPS time offsets**? Can beacon simply correct for this?

 \rightarrow we need independent cross check

gader.dorosti@kit.edu Institut für Kernphysik, KIT Campus Nord

\rightarrow estimate the pulse arrival time

 \rightarrow cross check the time calibration of beacon method

(Automatic Dependent Surveillance - Broadcast) data which can be used

Airplane: independent method

Some commercial airplanes send radio pulses which can be detected by AERA

Airplanes also send ADS-B to determine their positions

Determination of airplane position

- ADS-B transmitted at 1090 MHz at rate of 0.5 – 1 Hz
- contains information, e.g. latitude, longitude, altitude, heading and speed of the airplane
- can be received with equipments costing less than 20 USD

ADS-B receiver antenna

We deployed an ADS-B receiver antenna at the AERA field \rightarrow range of detection 400 km

An example event

An airplane trajectory reconstructed from ADS-B data 21:30, 22/09/14 $34^{\circ}S$ 21:25, 22/09/14 The airplane pulse measured by AERA y (km) 17 21:20, 22/09/14 San Rafael 16.5 21:15, 22/09/14 AERA 16 Malargüe 21:10, 22/09/14 15.5 15 21:05, 22/09/14 36°*S* 14.521:00, 22/09/14 68°W 70°W 14 -26.5-26 -25.5-28.5-28-27.5-27x (km)

By combining the real-time position information from ADS-B and the radio pulses emitted by airplanes \rightarrow time offsets between GPS clocks can be calculated

Comparison between ADS-B and AERA data

ADS-B and AERA reconstructed airplanes are highly correlated

qader.dorosti@kit.edu Institut für Kernphysik, KIT Campus Nord

Performance of the airplane time calibration

Again strong time fluctuations between stations: due to GPS time offsets?? \rightarrow apply beacon correction

Combination of beacon calibration and airplane measurement

Different antenna response \rightarrow different group delay

Mean time offsets over the course of several months are consistent within 2 ns

Reconstruction improvement

The wavefront of radio emission is known to be of hyperbolic shape

We fit a hyperbolic function $t = \beta \left(\sqrt{1 + x^2 / \gamma^2} - 1 \right)$

to extrapolate radio pulse time measured by stations as a function of its distance to the shower axis

Distance r_f to focus is correlated to depth of shower maximum \rightarrow composition measurement

Measurement of radio wavefront

After beacon correction the spread between the antenna types are suppressed

Summary

- Radio detection of cosmic rays provides complementary information on air shower physics
- Beacon provides a high precision timing calibration for autonomous radio detector
- We have cross-checked the beacon timing calibration with a novel method using the signal emitted from commercial airplanes:
 - \rightarrow 2 ns time precision
- The time calibration is already included in analysis

Outlook

Collect more airplane events

JINST 11 (2016) P01018 doi: 10.1088/1748-0221/11/01/P01018

Spare slides

<u>qader.dorosti@kit.edu</u> Institut für Kernphysik, KIT Campus Nord

Physics objective of AERA

Accurate measurements of:

Arrival direction

Mass composition

Radio interferometry

Energy

Artist's impression of radio wavefront measured by AERA

Shape of the wavefront measured on ground relates to the composition of cosmic rays

To exploit the full potential of radio measurement timing of 1 ns is needed

Typical airplane radio pulse measured by AERA stations

Time delay measured with AERA station

Systematic uncertainties of airplane measurement

The further from the reference station, the more precisely airplane position should be known

Airplane timing after beacon correction

