

Allianz für Astroteilchenphysik

SiPMs in Astroparticle Physics:

KIT Activities

(presently "JEM-EUSO", but R&D for broader application)

Andreas Haungs

Advanced Technologies

www.kit.edu

Standard PMT

Very small, mid & very large size PMTs

- broad application
- good QE

Still improvements possible

- QE
- afterpulsing
- pulse width
- dynode coating
- various dynodes (intrinsic dynamic range)
- noise factor
- HV adjustment
- ageing
- more competition

Though, okay for most applications

Conclusion:

Often no need to run behind newest SiPM developments

SiPM

Front contact

- fast development
- good PDE (but PMT still better [Razmik])

Still improvements needed

- PDE (=QE?)
- crosstalk
- dark current
- fast readout
- large areas
- operation temperature
- wavelength range
- cost reduction

Conclusion: Will be the future! Need close cooperation between companies and experiments

PMT vs. SiPM

	РМТ	SiPM
PDE	20-45%	20-60%
Gain	10^{6}	10^{6}
TTS (Transit Time Spread)	~1 ns	~1 ns
Dynamic range	10^{6}	10^3 😑
Dark noise rate	~kHz 🕚	~MHz 😕
Behavior in magnetic fields		\bigcirc
Operation Voltage	1000+ V 🙁	50-70 V 😲
Temperature sensitivity		.
Robustness and compactness		$\overline{\mathbf{O}}$

Andreas Haungs IKP

Examples of SiPM presently used in Astroparticle Physics

CTA

- **SST prototype with SiPM = ASTRI**
- **Already existing: FACT** •
- **MAGIC** started to replace •
- **Pierre Auger Observatory**
 - **FAMOUS** •
 - **AMD**
 - SSD (AugerPrime)? •
- **Dark Matter**
 - Low radioactivity
 - Low dark current
- **JEM-EUSO**

Connection to the SD electronics

Andreas Haungs

IKP

Bottom array he PandaX detecto

Bottom view of the DarkSide TPC

Detector Development JEM-EUSO International Space Station (ISS)

JEM-EUSO

UV photon *Particle

Extensive Air Shower (EAS)

Main Physics Objective

Measurement of Extreme Energy Cosmic Rays (EECR)

JEM-EUSO collaboration 16 Countries, 86 Institutes, 346 people

JEM-EUSO main features

Method:

fluorescence (full calorimetric)

Large field of view: ± 30° by double sided spherical Fresnel lenses

At 400 km (ISS): 2·10⁵ km² (nadir mode) up to 10⁶ km² (tilted mode)

No need for stereo: 400 km >> shower length (TPC with a drift velocity = c)

Andreas Haungs

IKP

Exploratory Scientific Objectives

Astronomy and Astrophysics through the particle channel

= Physics and Astrophysics at E > 5.×10¹⁹eV

- Exploratory Objectives: new messengers
 - Discovery of UHE neutrinos discrimination and identification via X₀ and X_{max}
 - Discovery of UHE Gammas discrimination of X_{max} due to geomagnetic and LPM effect
- Exploratory Objectives: magnetic fields
- Exploratory Objectives: Atmospheric science
 - Nightglow
 - Transient luminous events
 - Space-atmosphere interactions
 - climate change
 - ← with the fast UV monitoring of the Atmosphere

The observation technique

JEM-EUSO focal surface

Hamamatsu R11265-113-M64 MOD2

Focal surface:

- prototypes of PDM available
- FoV of 1 PDM = 27 x 27 km²

MAPMT: single photon Calibration

Single photoelectron spectrum

TA-EUSO: Cross-calibration tests at Telescope Array site, Utah

Main purpose: calibration using existing FD telescope

- Lidar and electron beam → absolute calibration
- Few showers in coincidence with TA
- 2 (squared 1 m²) Fresnel Lenses → FoV = 8 degree
- focal surface: 1 PDM (36 MAPMT, 2304 pixels)

Operational since autumn 2014!

Simulation of UV photons of TA ELS Squares: FoV of the TA-EUSO N.Sakaki / F. Bisconti, KIT

EUSO-Balloon JEM-EUSO prototype at 40km altitude

Main purpose: Background measurements and engineering tests

- Engineering test
- UV-Background measurement
- Laser tracks and flasher observations from helicopter

First flight: August 2014!

EUSO-Balloon First flight Timmins, Canada: 25th August 2014

- c. 5h data available
- incl. IR camera and laser (helicopter)

EUSO-SPB

JEM-EUSO prototype at long duration balloon flight

Main purpose: first EAS maesurements from Space!!

- Engineering test
- UV-Background measurement
- Air shower observations

Launch: Spring 2017!

Next steps: **EUSO-SPB** Super Pressure Baloon (SPB) Ultra Long Duration flight - first observations of UHECRs from space - test SiPM focal surface

Columbia Scientific Balloon Facility SPB - Flight 662NT -32 days, 5 hours, 51 minutes

Mini-EUSO Small (25 cm lenses + 1 PDM) prototype at ISS

35 cm

Scientific objectives

 UV emissions from night-Earth; Map of the Earth in UV
 Study of atmospheric phenomena and bioluminescence at Earth
 Study of meteors

Technological objectives

 First use of Fresnel lenses in space
 Optimization of characteristics and performances of EUSO
 Raise the technological readiness level of the Hardware

Operation approved Launch 2017 or 2018 ?

35 cm

25 cn

60 cm

17 cm

17 cm

18 cm

40 cm

Andreas Haungs

IKP

Mini-EUSO at ISS Russian Module Zvevna

Future: later on ISS or free flyer (M5 mission)?

ISS: 1 orbit in 90min

goal to replace MAPMT by SiPM !

Air Shower Observations from Space

SiPM for x-EUSO-y

Goal: to have an EC based on SiPM within 1 to 2 years to be able to design an alternative focal surface for the big mission and gaining experience and expertise for further SiPM applications

Main issues:

- large sensitive area = high filling factor (to avoid dead space and light cones)
 sensitivity to fluorescence light (UV-range 290-440 nm to cover full spectrum)
 fast readout (specific ASIC, digital SiPM, monolithic SiPM/ASIC readout)
- **Characteristics and calibration** (single photon efficiency)
- mechanical structure = integration (to fit a focal surface)

SiPMs as JEM-EUSO Elementary Cell?

The TSV-SiPM candidate fits into the former design of a MAPMT based EC. With this, in foreseeable time and effort, it is possible to create a plane PDM focal surface with MAPMT ECs and TSV-SiPM ECs for Mini-EUSO, EUSO-TA and EUSO-Balloon.

> 4x 64 pixel Hamamatsu MPPC TSV Array S12642-0808PB

> > Socket: SAMTEC ST4-40-1.00-L-D-P-TR

> > > Adjusted height to create a plane PDM (=9 ECs) with SiPMs and MAPMTs together for perfomance tests.

New breakoutboard (not HV) New space for amplifier board (if necessary)

Filling factor higher than with MAPMTs

T. Huber, KIT

23 01.02.2016, Mainz HAP workshop, Advanced Technologies Andreas Haungs

Hamamatsu TSV-Array

T. Huber, KIT

Candidate: Hamamatsu 64Pixel SiPM TSV-Array

Microscope images made in cooperation with KIT - Institute for Nanotechnology (INT)

10x zoom

2.5x zoom into 1 Pixel

1 Pixel from the TSV Array 100x zoom

1 Avalanche Photodiode (of est. 1100@ 1 pixel)

Andreas Haungs

SiPM vs MAPMT: Efficiency

An estimate for comparison

Now available: arrays available from Hamamatsu sensitive to UV light

Ratio of SiPM area and Nitrogen spectrum area ≈ 29 %

Be careful: Fluorescence spectrum depend on atmospheric height

> Ratio of MAPMT area and Nitrogen spectrum area ≈ 23 %

> > Thomas Huber (IKP)

SiPM vs MAPMT: Efficiency

Now available: arrays from Hamamatsu sensitive to UV light

Andreas Haungs

IKP

Calibration Principle

M.Karus, KIT

Single PhOton Calibration stand at KIT (SPOCK)

Determination of breakdown voltage

- U-I-Curve of one SiPM channel
- Linear Fits on the curve parts before and after Breakdown Voltage
- Crosspoint of the fits is approximate Breakdown Voltage

T. Huber, KIT

Andreas Haungs

Temperature dependence of Bias Voltage

Correlation Bias Voltage and Temperature

With a constant Bias-Voltage:

Investigation of TSV-SiPMs with an AFM before/after cooling

- No structural problems measured
- No grain boundary form cracks <u>accured</u> during cooling/heating process

→ It seems that this kind of SiPMs are usable for operating in environmental conditions

Before:

After:

0 µm 5

10 15

1.00 µm

0.80

0.60

0.40

0.20

0.00

-0.20

-0.50

µm 20

Karlsruhe Institute of

25

SiPM efficiency estimation with SPOCK

- Gauss fit: N_{ped}
- Total events (trigger): N_{tot} = 10013

- Gauss fit: N^{dark}_{ped}
- Total events (trigger): N^{dark}_{tot}
- Correction term for thermal noise

$$\epsilon = \frac{1}{N} \cdot \left\{ -\ln\left(\frac{N_{ped}}{N_{tot}}\right) + \ln\left(\frac{N_{ped}^{dark}}{N_{tot}^{dark}}\right) \right\}$$

Andreas Haungs

SiPM efficiency estimation with SPOCK

1 single pixel (old) SiPM (due to misisng readout electronic for SiPM)

45% PDE @ 371 nm This is most likely overestimated due to afterpulses and crosstalk

TSV-Epoxy vs TSV-Silicone Array from Hamamatsu

S12642 (old)

- 64 Channels
- SamTec Connectors
- Epoxy resin
- Specifications by Hamamatsu:
 - · APDs: 3584 / channel
 - Breakdown Voltage: 65 ± 10 V
 - Darkcount: 2 3 M counts/s
 - Gain: 1.25 x 10^6
 - Photo Detection Efficiency: 35%

S13361 (new)

- 64 Channels
- SamTec Connectors
- Silicone resin
- · Specifications by Hamamatsu:
 - · APDs: 3584 / channel
 - Breakdown Voltage: 53 ± 5V
 - Darkcount: 0.5 1.5 M counts/s
 - Gain: 1.7 x 10^6
 - Photo Detection Efficiency: 40%

M.Renschler, KIT

TSV-Epoxy Array

Next: Measurements of the 64 channel SiPM arrays with a QADC \rightarrow Breakdown Voltage \rightarrow PDE \rightarrow Gain \rightarrow Crosstalk Probability

M.Renschler, KIT

TSV-Silicone Array

Next: Measurements of the 64 channel SiPM arrays with a QADC \rightarrow Breakdown Voltage \rightarrow PDE \rightarrow Gain \rightarrow Crosstalk Probability

M.Renschler, KIT

EUSO-SPB Mission and SiECA

SiECA-Silicon EC Add-on for EUSO-SPB

Issues

- Si-DAQ Board
 - 256 SiPM channels -
 - **Clockand trigger from PDM** -
 - Power Supply -
 - ASICs (8 citiroc?) -
 - FPGA (signal look like MAPMT) -

- SiECA mechanical frame
- **UV-Filter**
- Lab SiPM test system for SiECA (with Tübingen)

Requirements for the ASIC (in future)

KIT ASIC Development for EUSO-like devices

(This list is purely idealized and heavily based on currently available systems)

1) Larger Channel input: Increasing the number of channels to 64, 128, 256 will greatly simplify board design

- 2) BGA package instead of QFP (More channels without increasing form factor)
- 3) 5 ns timing resolution and pulse shaping
- 4) Low power consumption (2mW/ch or less)
- 5) Internal biasing for flat fielding/temperature control
- 6) Pulse counting within timing bin & current integration over entire timing bin; Bin length selectable from 250ns-5µs

7) Multiplexed output

SiPM for JEM-EUSO....personal opinions

- Characteristics of different SiPMs (small ones, arrays) worldwide effort....Hamamatsu seems to be leading (for us)
- Going for single photon calibration hard job but possible
- Going for temperature complex, but should be under control!
- Going for larger arrays looks good!
- Going for UV sensitivity looks promising - needs to be tested!
- Going for (fast) readout crucial point
- Going for Simulations needs to be done....
- Going for integration as EC could be solvable
- Going for EC integration in PDM slow progress! (at least for me)
- Going for space qualification

All measurements shown are preliminary and need to be optimized and repeated in detail

Andreas Haungs

IKP

