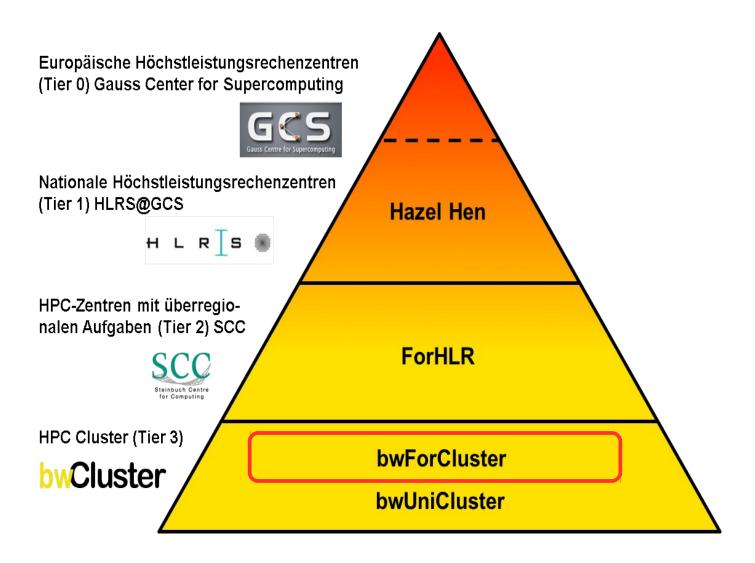


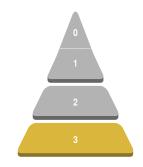
Benchmark-Anforderungen im Beschaffungsprozess der **bwForCluster**

Bernd Wiebelt, Rechenzentrum, Universität Freiburg Jürgen Salk, kiz, Universität Ulm

Hochschule Esslingen
University of Applied Sciences



ulm university universität



bwHPC Leistungsebenen

bwCluster @ Tier 3

<u>bwForCluster MLS&WISO (10/2015):</u>
Wirtschafts- und Sozialwissenschaften,
Molekulare Lebenswissenschaften

bwUniCluster (02/2014):

Allgemeine Versorgung, Lehre und Training Mannheim / Heideberg

Karlsruhe

<u>bwForCluster BinAC (2016):</u>
Bioinformatik,
Astrophysik

Tübingen 🧡 Ulm

Freiburg

bwForCluster NEMO (Q2/2016):

Neurowissenschaften, Elementarteilchenphysik, Mikrosystemtechnik <u>bwForCluster JUSTUS (12/2014):</u> Computergestützte Chemie

bwForCluster

- bwForCluster sind auf spezifische Wissenschaftsbereiche zugeschnitten
- Beschaffung von Hardware und Software in Abstimmung mit den designierten Benutzern
- Begleitprojekt bwHPC-C5 (Kompetenzzentren)

Design bwForCluster


Generelle Zielsetzung:

- Schaffung von Forschungsclustern, die speziell auf die Anforderungen der Nutzer im Bereich der jeweiligen Fachrichtungen zugeschnitten ist.
- Anpassung der Kapazität und Architektur an die Zielgruppen aus 9 Universitäten Baden-Württembergs
- Volle Integration in bwHPC-Konzept

Design bwForCluster

Generelle Frage am Anfang: Wie findet man das "richtige" System?

Co-Design

This process believes that by encouraging the trained designer and the user to create solutions together, the final result will be more appropriate and acceptable to the user.

Source: Wikipedia (http://en.wikipedia.org/wiki/Co-design) and Albinsson, L., M. Lind, et al. (2007). Co-Design: An approach to border crossing, Network Innovation. eChallenges 2007, The Hague, The Netherlands

Benchmarks als Designmerkmal

- Wesentliches Bewertungsmerkmal bei Beschaffung
 - Beschreibt letztlich die "Leistungsfähigkeit" des Gesamtsystems
- Aber viele Optimierungsvektoren:
 - CPU-Architektur
 - Anzahl Nodes, Anzahl Cores pro Node, Taktfrequenz
 - Memory-Bandbreite, Cachegröße
 - I/O
 - Spezial-Hardware
 - **...**
- Leistet das System, was sich die Betreiber davon versprechen?
- Leistet das System, was sich die Benutzer davon versprechen?

Welche Benchmarks werden ausgewählt? Wie werden sie gewichtet?

Standard-Benchmarks

- Robust und umfangreich getestet
- Single-Component
 - Beispiel: Stream (Arbeitsspeicher), IOR (Filesystem)
 - Gut geeignet, um minimale Qualitätsstandards zu definieren
 - Bei korrektem Einsatz eindeutige Qualitätsaussagen
- Multi-Component
 - Beispiel: Spec, HPL
 - Abschätzung der Gesamtsystemleistung in speziellen Szenarien
 - Bei korrektem Einsatz eindeutige quantitative Aussagen

Frage ist nicht ob, sondern welche Standard-Benchmarks genutzt werden

Applikations-Benchmarks

- In Kooperation mit Benutzern
 - Umfragen, fachspezifische Konsultationen, Benchmark-Workshops
 - Auswahl repräsentativer Applikationen
 - Definition geeigneter Testläufe
- Bei korrektem Einsatz hohe Aussagekraft für Wert des Gesamtsystems
- Probleme/Fragen:
 - Wie kommt man an geeignete Benchmark-Daten?
 - Was wird eigentlich getestet?
 - Wie robust ist der Benchmark im Eigenbau gegenüber verschiedenen Hardwarekonfigurationen (z.B. Scale-Up)?
 - Könnte der Benchmark durch einen Standard-Benchmark ersetzt werden?

Erster grober Design-Ansatz bwForCluster JUSTUS

- 3 Knoten-Typen für verschiedene Anwendungsklassen
- Grobe Verteilung der Typen: 100:100:10

Node Type 1:

- Very high I/O performance
- Applications with very low scalability
- Problem sizes demand 128GB RAM
- Turbomole, Gaussian, Molpro, Schrödinger-Jaguar, Orca, Cfour and Gamess.

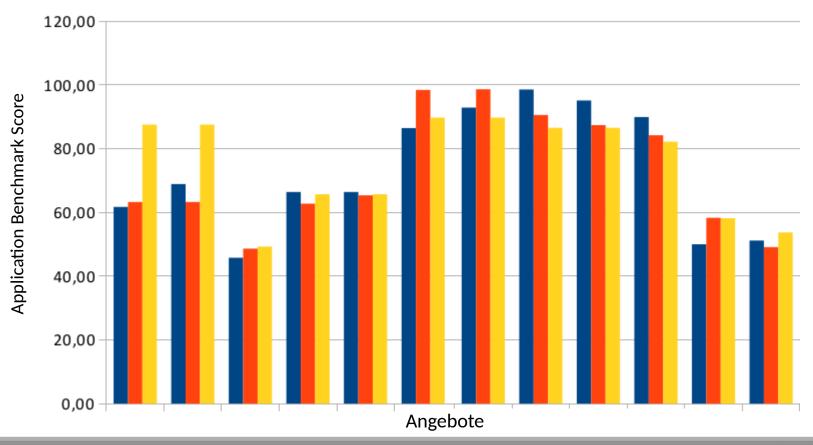
Node Type 3:

- Very high I/O performance
- Single node
- Problem sizes demand 512GB RAM
- Same App. mix as Seg. 1

Node Type 2:

- I/O performance less relevant
- Applications with low to medium scalability
- Problem sizes demand 128GB RAM
- VASP, ADF, AIMS, DACAPO, ABINIT, QuantumEspresso, CPMD, Amber, Gromacs

Applikations-Benchmarks:


- Auswahl repräsentativer Applikationen für jeden Knotentyp:
 - Typ 1/3: Molpro
 - Typ 2: VASP
- Herausforderung: Definition von Test-Cases mit annehmbaren Laufzeiten für Benchmarks (sehr viel kürzer als normale Jobs), die aber trotzdem die Vor- und Nachteile verschiedener Lösungen aufdecken.
- Erfordert hohes Maß an Expertenwissen zu den ausgewählten Applikationen
- Beispielwerte aus Molpro Benchmarks:

Bench	128GB + 2*SATA	128GB + 4*SSD
DFT j1c8	300s	301s
CCF12 j1c8	6000s	5618s
LCCSD j1c8	9000s	4992s

Große Laufzeitunterschiede! Bei mehreren Jobs pro Knoten (=Emulation größerer Jobs) ist der Effekt noch ausgeprägter.

Applikations-Benchmarks:

- Bei der Bewertung der Benchmarks wird Performance des Gesamtsystems beurteilt
- Es zählt nicht der einzelne Benchmark, sondern Jobs pro Zeiteinheit (Throughput)
- Knotenzahl spielt eine Rolle

Design-Ansatz bwForCluster NEMO

- Neurowissenschaft
 - Simulation von biologischen neuronalen Netzwerken (Standard-Software NEST)
 - Compute-Inseln (500-800 Cores) mit non-blocking Hochleistungsnetzwerk
 - Datenanalyse mit Matlab oder Python
 - Viel Speicher (mind. 128 GB) oder viel Durchsatz (Cores)
- Elementarteilchenphysik
 - Einsatz des Software-Stack des CERN (cvmfs)
 - Viele Cores, mindestens 4 GB pro Core
 - Mathematica (Theoretische Physik)
 - Viel Speicher (mind. 128 GB)
 - Virtuelle Forschungsumgebungen
 - Möglichst geringer Verlust beim Einsatz von virtuellen Maschinen
- Mikrosystemtechnik
 - Viele Cores, Hochleistungsnetzwerk (MPI)

Benchmarks bwForCluster NEMO

- Ausschreibung: Uniformer Node-Typ mit 128 GB Speicher
- Applikationsbenchmarks Neurowissenschaft:
 - NEST (CPU + Memory + Hochleistungsnetzwerk)
 - Beitrag (Matlab-Code) eliminiert, im Wesentlichen CPU-Benchmark
- Applikationsbenchmarks Elementarteilchenphysik
 - HEP-SPEC06 (CPU)
- Applikationsbenchmarks Mikrosystemtechnik
 - Beitrag (C Quellcode) eliminiert, im Wesentlichen CPU Benchmark

Außer NEST und HEP-SPEC06 keine Applikationsbenchmarks

Benchmark-Ausführungsregeln

- Hardware benchmarken, nicht die Skills der Mitarbeiter des Anbieters
 - Praxisnahe Compiler und Compile-Optionen vorgeben
 - Programmaufrufe vorgeben (z.B. ohne CPU-Pinning)
 - Exakte Versionsvorgaben machen oder Quellcode als Download bereitstellen
- Ergebnisse vergleichbar machen, Features abstellen
 - Simulateneous Multithreading
 - Turbo Mode
 - Cluster-on-Die
- Ausführung auf der realen Hardware favorisieren
 - Wer extrapoliert, muss spätestens bei der Abnahme des Systems auch die versprochenen Ergebnisse liefern

Alle Benchmarks (NEMO)

- Standard-Benchmarks
 - HPL (Flops)
 - Stream (Arbeitsspeicher)
 - IOR (paralleler Storage)
- Applikations-Benchmarks
 - NEST (Hochleistungsnetzwerk, CPU, Memory)
 - HEP-SPEC06 (CPU)

Strategie: Wenige, robuste Benchmarks

Weitere Benchmarks bwForCluster JUSTUS

IO Benchmarks:

- Unterschiedliche Benchmarks für verschiedene Storage-Bereiche des Clusters:
 - Lokaler Scratch
 - Home Filesystem
 - Globaler Scratch (paralleles Filesystem)
- Herausforderung bei allen IO-Benchmarks: Page-Caching des Kernels beachten
 - Erfordert hinreichend große Datensätze und/oder spezielle Flags bei Benchmark-Tools
 - Ausschnitt aus IO Benchmark-Guide für JUSTUS:

"The sum of all working file sizes on each compute node [...] must be greater than 2 times the available memory on the individual compute nodes involved in the test."

Verwendete IO Benchmark Tools:

- **FIO** (http://freecode.com/projects/fio)
 - "fio is an I/O tool meant to be used both for benchmark and stress/hardware verification."
 - Auszug aus IO Benchmarking Guide für JUSTUS:
 "The storage system will be subjected to different file access patterns, including pure sequential and random read/write operations as well as mixed workloads based on IO patterns expected for quantum chemistry applications."
- IOR (https://sourceforge.net/projects/ior-sio)
 - "The IOR software is used for benchmarking parallel file systems using POSIX, MPIIO, or HDF5 interfaces."
 - Single-Node und Multi-Node Benchmarks gefordert (nur POSIX IO)
- MDTEST (https://sourceforge.net/projects/mdtest)
 - "mdtest is an MPI-coordinated metadata benchmark test that performs open/stat/close operations on files and directories and then reports the performance."
 - Single-Node und Multi-Node Benchmarks gefordert

IO Benchmark Matrix:

Cluster segment	Storage Entity	fio	IOR	mdtest
Segment 1	local	Х		Х
	home		X	X
	global		X	X
Segment 2	local			
	home		X	X
	global		X	X
Segment 3	local	X		X
	home		X	X
	global		X	Х

- Weitere verwendete Benchmarks: Memory Bandwidth und Messaging
 - STREAM (https://www.cs.virginia.edu/stream)
 - "The STREAM benchmark is a simple synthetic benchmark program that measures sustainable memory bandwidth (in MB/s) and the corresponding computation rate for simple vector kernels."
 - Nicht verwendet, aber evtl. gute Alternative zu STREAM: Intel MLC Benchmark
 - https://software.intel.com/en-us/articles/intelr-memory-latency-checker
 - Intel IMB (http://software.intel.com/en-us/articles/intel-mpi-benchmarks)

Was ist rausgekommen?

Was ist rausgekommen?

Segment 1: 204 nodes

- Dual Socket E5-2630v3 2.4 GHz
- NEC "Green Gem" Platform
- 128 GB DDR4-RAM
- 4x240 GB SSD (RAID0)
- 64 GB (max.) Ramdisk

Segment 3: 38 nodes

- Dual Socket E5-2630v3 2.4 GHz
- NEC "Green Gem" Platform
- 256 512 GB DDR4-RAM
- 4x480 GB SSD (RAID0)
- 128 256 GB (max.) Ramdisk

Segment 2: 202 nodes

- Dual Socket E5-2630v3 2.4 GHz
- NEC "Green Gem" Platform
- 128 GB DDR4-RAM
- Diskless
- 64 GB (max.) Ramdisk

Visualization: 2 nodes

- Dual Socket E5-2630v3 2.4 GHz
- NEC "Green Gem" Platform
- Nvidia K6000 Graphic Card
- VirtualGL based remote vis

Benchmarks bwForCluster NEMO

Was ist rausgekommen?

...besuchen Sie den bwHPC-C5 Stand auf der ISC 2016

Danke für Ihre Aufmerksamkeit!

