

Introduction and status report

Matthias Vogelgesang

matthias.vogelgesang@kit.edu

Institute for Data Processing and Electronics

Introduction

Welcome

- Thanks in advance for showing interest and attending this workshop 🖒
- This workshop is affiliated with the general meeting of the Helmholtz program *Matter and Technologies*

Welcome

- lacksim Thanks in advance for showing interest and attending this workshop ${f t\! 0}$
- This workshop is affiliated with the general meeting of the Helmholtz program *Matter and Technologies*

Scope of this workshop

- Get to know each other within Helmholtz and beyond
- Be a platform for users and developers alike
- Consists of a series of talks covering different aspects of many-core technologies

Parallel computing technologies

13:00	Erik Zenker – Core Concepts – Zero Overhead Abstractions for Scalable Many-core Data Analysis
	Fabian Jung – A scalable Experiment to HPC Cluster Solution for Data Analysis
14:00	Tobias Stockmanns, Hannes Mohr – GPUs for Track Trigger in High Energy Physics
	Coffee break

Applications

15:00	Felix Beckmann – Computational Challenges for Microtomography using Synchrotron Radiation at PETRA III
	André Bieberle – Analysis of Hydrodynamic Effects using Ultrafast X-ray Tomography with GPU-accelerated Data Acquisition
16:00	Malte Zacharias – Just-in-time Dosimetry using Positron Emission Tomography
	Alexander Matthes – Live, Steerable in-situ Visualization for High Perfor- mance Computing

Visualization & optimization

16:00	Malte Zacharias – Just-in-time Dosimetry using Positron Emission Tomogra- phy
	Alexander Matthes – Live, Steerable in-situ Visualization for High Performance Computing
17:00	Nicholas Tan Jerome – 3D Web-Visualization Technologies
	Suren Chilingaryan – Optimizing Algorithms for Parallel Architectures

Tomorrow

- We will offer two tutorials related to GPU programming
- NVIDIA GPGPU within a Docker environment (Andrei Shkarin)
- Set up, usage and extension of the UFO framework (myself)

General meeting

If you attend the "Matter and Technologies" meeting, please keep your badges.

Lunch

Lunch tickets will be offered in the Tulla lecture hall, ask me or Andreas for further details.

STATUS

- Mostly cleanup and various fixes
- ZMQ and MPI are entirely optional now
- Environment variable UFO_DEVICES generalizes CUDA_VISIBLE_DEVICES
- ufo-launch learned to --dump and --trace and comes with bash completion
- Support for plugin packages (Buldygin)

UFO plugins

Improved plugins

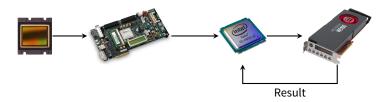
- backproject fixed and optimized
- read can load raw files and override type detection
- fft, ifft and phase-retrieve use a common code base

New plugins

- ir for iterative reconstruction (Buldygin, Shkarin)
- stdin and stdout for better UNIX pipeline integration
- merge, loop and monitor to manipulate and inspect the stream
- flip and clip for basic image operations
- dgma for RDMA between FPGA and GPU

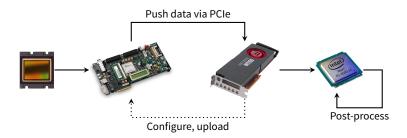
UFO plugins

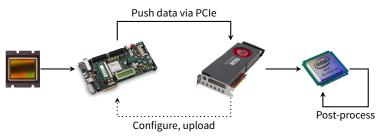
Improved plugins


- backproject fixed and optimized
- read can load raw files and override type detection
- fft, ifft and phase-retrieve use a common code base

New plugins

- ir for iterative reconstruction (Buldygin, Shkarin)
- stdin and stdout for better UNIX pipeline integration
- merge, loop and monitor to manipulate and inspect the stream
- flip and clip for basic image operations
- dgma for RDMA between FPGA and GPU


FPGA-GPU data acquisition


FPGA-GPU data acquisition

FPGA-GPU data acquisition

Benefits: lower latency and fewer memory transfers

FPGA

- Xilinx VC709 (PCIe 3.0) on the frontend side (Caselle, Rota)
- On-board DDR memory management added recently (Ardila Perez)
- Linux driver used to access the FPGA via PCIe (Chilingaryan)

GPU

- AMD FirePro W9100 on the backend
- AMDs DirectGMA RDMA OpenCL extension for buffer management
- Writable buffers are limited in size (pprox 100 MB)

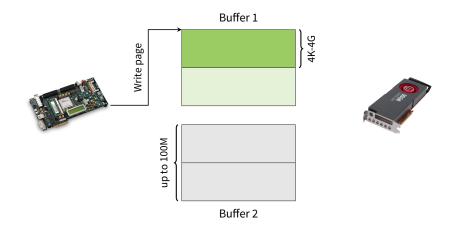
Writing to GPU

- 1. Create OpenCL buffer with CL_MEM_BUS_ADDRESSABLE_AMD
- 2. Determine address by passing buffer to clEnqueueMakeBuffersResidentAMD()
- 3. Set address and paging information in FPGA control registers
- 4. Busy-wait until FPGA flag signals completion

Writing to FPGA

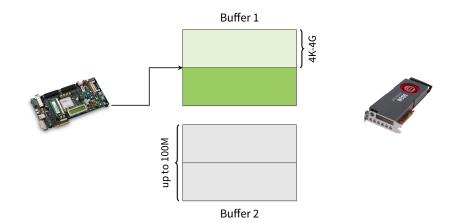
- 1. Create OpenCL buffer with CL_MEM_EXTERNAL_EXTERNAL_PHYSICAL_AMD
- 2. Determine physical address of FPGA's "memory space"
- Pass buffer and address to clEnqueueMakeBuffersResidentAMD()
- 4. Writes from the GPU are proxied transparently to the FPGA

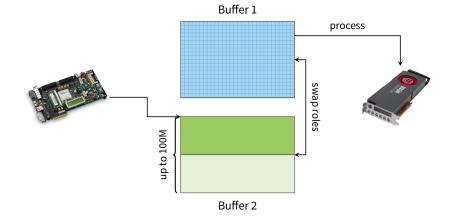
New dgma plugin


- Encapsulates FPGA communication protocol
- Schedules writes in asynchronous, double-buffered fashion for high throughput
- Optional data conversion to re-interpret raw data

With that plugin reading data is transparent to the end user, e.g.

```
$ ufo-launch dgma number=1 num-pages=32
width=512 height=512 !
stdout | gzip -c - > data.raw.gz
```


Double-buffered, paged readout

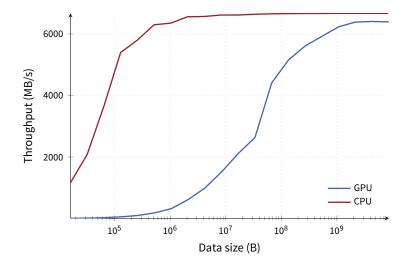

Double-buffered, paged readout

Double-buffered, paged readout

13 2016/03/07 M. Vogelgesang Introduction and status report

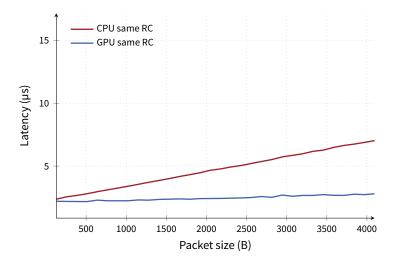
Problem

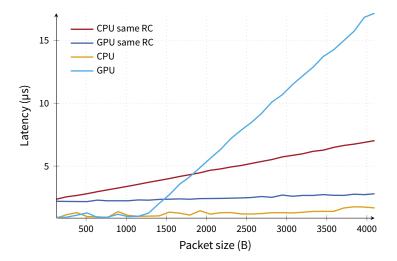
- Resident buffers can only be some hundred MBs large
- FPGA can write to a 4 GB address space ...


Solution: intermediate resident buffers

- 1. Allocate large target buffer
- 2. Write chunks of 32 MB (\approx half the resident buffer size)
- 3. clEnqueueCopyBuffer() the chunk to target buffer¹
- 4. Immediately start transferring next chunk

¹No problem with 40 GB/s intra-GPU bandwidth at 5 MB blocks.


Throughput (old)


Roundtrip latency (old)

Roundtrip latency (old)

Performance

- We are able to hit peak PCIe bandwidth to the GPU
- Data transfer latencies are promising for timing-sensitive applications
- Lowest latencies require use of special boards

Caveats

- Limited DGMA buffer size requires partitioning
- AMDs OpenCL implementation causes an initial pprox 150 μ s dead time
- Synchronization facility does not work as specified

- Clarify implementation details with AMD
- Finish investigations with NVIDIA GPUs
- Improve performance and evaluate further applications

Further activities at IPE and ANKA

GPU-related

- Micro Particle Image Velocimetry (Miao with TVT)
- Improved tomo- and laminographic filtered backprojection (Farago at ANKA/IPS)
- Algebraic laminographic reconstruction (Reinke with ANKA/IPS)
- Pre-processing of beam monitoring data acquired with KALYPSO (Vogelgesang)

...and beyond

- Multimodal visualization of 2- and 3-dimensional data (Tan Jerome)
- Infrastructure for virtualized processing environments (Shkarin)
- High throughput data communication (Dritschler)
- High performance and custom image data acquisition (Sasidahr, Vogelgesang)

ANY QUESTIONS?