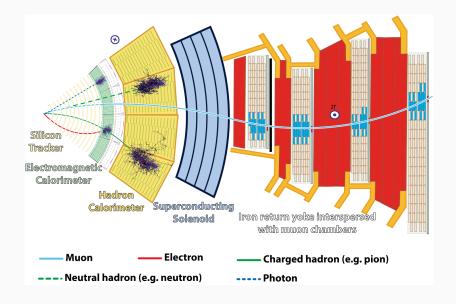
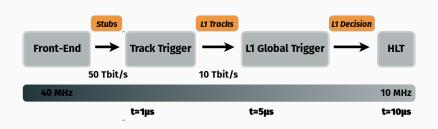
GPUs as a possible L1 Track Trigger

Hannes Mohr, Timo Dritschler (Supervisor)

March 7, 2016


Institut für Prozessdatenverarbeitung und Elektronik

LHC Upgrade Plans

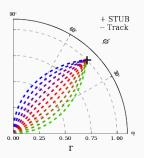


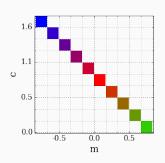
- High Luminosity-LHC: Upgrade of the LHC (≈ 2025)
- Observations of events below current sensitivity level
- Current Luminosity increased by a factor of 10
- ≈ 12.000 Hits per Bunch crossing in the outer Tracker
- Bunch crossings happen every 25 ns
- \Rightarrow Complete redesign of the Tracker and the Trigger System


CMS Detector Layers, Transverse Slice

Experimental Requirements

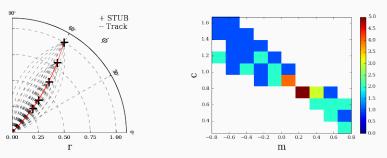
- Low Latency
- High Frequency
- High Data Rates




Hough Transformation

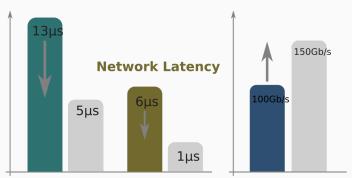
Transformation from Normal Space to Houghspace

$$\phi(\mathbf{r}) = \mathbf{m}\mathbf{r} + \mathbf{c}$$


Each possible track for a stub, leads to a point in Hough Space

Hough Transformation

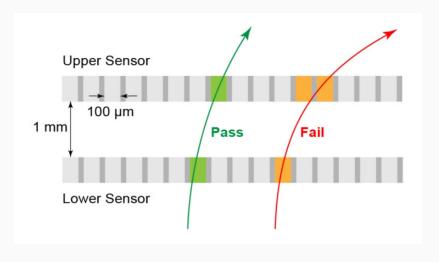
Mutliple stubs from the same track, lead to intersecting lines



More than 5 hits in one cell, lead to a readout of this cell's stubs

Current State and Outlook

Interconnect Throughput


(Grey) Required performance

Preliminary Benchmark¹

 $^{^1} Processing time for 1 <math display="inline">\phi\text{-sector},$ cotaining 500 stubs, assuming 36 $\phi\text{-sectors}$ in total, benchmarking done on a TitanX, Using CUDA 7.5

Stub Principle

