
www.kit.eduKIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association

Adapting Filtered Back Projection algorithm for
various parallel architectures

S. Chilingaryan

acquisition
flat field

correction

.

noise
reduction

sinogram
generation FFT

.
filter iFFT back

projection

Storage

.

Segmentation /
meshing

storage of raw data

S. Chilingaryan et. all2 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Ultra Fast X-ray Imaging of Scientific Processes with
On-Line Assessment and Data-Driven Process Control

ANKA
beam line

Optics and sample
manipulators

Smart high-
speed camera

Online monitoring
and evaluation

Offline
storage

UFO

Goals
High speed tomography
Increase sample throughput
Tomography of temporal processes
Allow interactive quality assessment

Enable data driven control
Auto-tunning optical system
Tracking dynamic processes
Finding area of interest

S. Chilingaryan et. all3 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Optimizing for parallel architectures

Compute Unit
on Fermi

Consists of SIMD-type Compute Units (CU)
One instruction is executed on many data items
Each CU able to execute several operation types
But only FP additions/multiplications are fast

Posses complex memory hierarchy
Low Bandwidth-per-flop ratio and small caches
Up to four different types of memory
Optimal access pattern have to be followed

Architectures vary drastically
Sizes, speed, and structure of memories / caches
Types and amount of provided processing units
Balance of operation throughput

Codes and algorithms have to be
carefully optimized for the specific
parallel architecture

S. Chilingaryan et. all4 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Memory model
• Host Memory
– 6 GB/s (PCIe x16 gen2) to

 12 GB/s (PCIe x16 gen3)
• Global Memory
– 100 – 300 GB/s with

latencies up to 1000 clocks
• Local Memory
– 1 – 2 TB/s (total) with

latencies below 100 clocks
• Registers
– private to threads
• Caches
– L1/L2 cache
– Texture cache
– Constant memory

Complex memory hierarchy consisting of 4 levels and with each level
one order of magnitude faster when previous!

S
y stem

 M
em

ory

S. Chilingaryan et. all5 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

grid

block

thread

warp

Programming Model

e.g. resulting image is mapped to
a 1-, 2-, or 3D grid of GPU threads
and each pixel is computed by a
thread with the index equal to pixel
coordinates

All threads execute the same code (kernel)
Task is defined by the linear or volumetric index of the thread
GPU schedules threads in groups of fixed size (warp)
A user-defined block of threads is assigned to a specific CU
Threads of the block may exchange data using CU shared

memory

Thread abstraction is used to split the problem space into the
independent GPU tasks

S. Chilingaryan et. all6 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Scheduling

Warps from several blocks are executed by CU in parallel
The number of currently resident warps is called occupancy
Occupancy is limited by available registers and shared memory
Suboptimal occupancy limits the instruction bandwidth

Warp Scheduler Warp Scheduler

Warp 1 instr 1 Warp 2 instr 1

Warp 3 instr 1 Warp 3 instr 2

Warp 1 instr 2 Warp 4 instr 1

ti m
e

Core Core Core SFU SFU LD LD

Multiple warps on CU
executed in parallel

Independent instructions
executed in parallel

Warp 4 will be blocked for
a long time, but other
warps on CU will execute
and hide the latency

For optimal performance we have to increase occupancy
and number of independent instructions

S. Chilingaryan et. all7 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

FBP Reconstruction

1 2 3 4 5proj. α

1. For each position we compute:
x●cos(α) - y●sin(α)

2. Interpolate between neighboring bins
3. Sum over all projection
4. The sum is the value of (x,y)

(x,y)

x●cos(α) - y●sin(α)

….

1 2 3 4 5proj. 0 ….
1 2 3 4 5proj. 1 ….
1 2 3 4 5proj. 2 ….

….

bins

For each texel of output volume
and for each projection we perform
a single linear interpolation

1. Filtering
Multiplication with the configured filter in the Fourier space

2. BackProjection

S. Chilingaryan et. all8 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Texture Engine

Features:
• Spatial-aware cache
• Bi/tri-linear interpolation
• Normalized coordinates
• Different clamping modes

Applications:
• Linear interpolation, i.e. image

scaling
• Optimize random access to

multidimensional arrays

S. Chilingaryan et. all9 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Filtered Back Projection

Image Loader

Pool of Sinograms
 (host memory)

Pool of CPU and GPU
processing threads

Pool of Vertical Slices
(host memory)

Texture

Data Storage

W

H

GPU
thread

1st Stage 2nd Stage

Double
buffering

Double
buffering

Filtering

P
C

Ie D
ata

T
rans fer

P
C

Ie D
ata

T
ra nsf er

Fetch slices
for processing Store results

S. Chilingaryan et. all10 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Performance of Texture Engine

GT280 GTX580

Core
Throughput

930 GF 1580 GF

Texture Fill
Rate

48 GT/s 49 GT/s

Ratio 19.3 31.6

S. Chilingaryan, M. Vogelgesang, A. Mirone, A. Kopmann11 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Optimizing FBP for Fermi

Texture

Image

N
2
 texture fetches

Standard Version
Texture engine is heavily loaded

Texture

Shared
Memory

(3/2)*N texture
fetches

Image

N
2
 interpolations

Fermi-optimized Version
Both texture & computations engines are used

Thread
block

16 px

16 px

Each block of threads accesses actually only 3 ● N / 2 bins per projection

v = x●cos(α) - y●sin(α)
max

x,y<N
(v) – min

x,y<N
(v) < N√2

N√2 < 1.5 N

NN

S. Chilingaryan et. all12 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Pixel to thread mapping
bins

projections

24 bins

16 proj.

Processed by a single
thread block (16x16)

48 bins of a projection
required for current block

Texture
Memory

48 bins

16 proj

..

.Step1: filling shared memory
Only 48 texture fetches per
projection

32 px

32 px

Step2: integrating the volume
322 interpolations per projection thr (1,1)

thr (1,2)

thr (1,3)

thr (2,1)

thr (2,2)

thr (2,3)

thr (3,1)

thr (3,2)

thr (3,3)

Shared
Memory

Volume

16 of the projections
processed in a single pass

Legend

Processing in multiple passes,
16 projections each

16

16

Processing 4 pixels per thread reducing amount of
texture fetches and hides operation latencies with
multiple independent operations (instruction
reordering).

Px. Fetches/px. Regs ShMem Occup. ILP

1 0.09375 26 1536 66% 1

4 0.046875 32 3072 66% 4

S. Chilingaryan et. all13 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Oversampling

Method Fetches/px Regs ShMem Occup. Reads/px Flops/px
Linear 0.046875 32 3072 66% 2 7

Oversample 0.1875 42 12288 50% 1 4

Linear interpolation is
slow, and nearest

neighbor is not precise
enough

Bin 0

0 0.25 0.5 0.75 1

192 bins

Shared
Memory

Bin 1

1.25 1.5 1.75 2

Bin 2

2.25 2.5 2.75 3

...

12 texture fetches per thread

With oversampling the
texture engine is used to
interpolate 4 positions for
each projection bin and
near-neighbor interpolation
is used then.

S. Chilingaryan et. all16 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Kepler: Fast Texture Engine is Back

GT580 GTX680 Change

Texture Engine 49.4 GT/s 128.8 GT/s 2.6 x

Floating-point
operations

16 x 32 x

1.55 GHz
8 x 192 x 1.006

GHz
1.94 x

Integer multiplication,
bit operations, type

conversions

16 x 16 x

1.55 GHz

8 x 32 x

1.006 GHz
0.65 x

Shared Memory 48 KB 48 KB 1

Blocks per SM 8 16 2

Registers
32K per SM,

63 per thr.

64K per SM,

63 per thr.
1

S. Chilingaryan et. all17 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Default approach

binsprojections 16 bins

Texture
Memory

2 3 4 5 6 7 8 9 101112131415161

2 3 4 5 6 7 8 9 101112131415161

2 3 4 5 6 7 8 9 101112131415161

16 bins

Texture Cache Hit Rate 89 %

Texture Throughput 79.3 GT/s

Theoretical Throughput 128.8 GT/s

1. Up to 16 bins are accessed per warp
2. All threads are accessing a single texture row

Block of 16x16 pixels

S. Chilingaryan et. all18 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Optimizing the thread mapping

Warp 1

Warp 2

Warp 3

Up to 16 texture locations
per warp.

Less than 6 texture
locations per warp

Texture

2 3 4 5 6 7 8 9 101112131415161

Block of 16x16 pixels

2 3 4 5 6 7 8 9 101112131415161

2 3 4
5 6 7 8
9 101112
13141516

1 2 3 4
5 6 7 8
9 101112

13141516

1 2 3 4
5 6 7 8
9 101112

13141516

1

2 3 4 5 6 7 8 9 101112131415161
2 3 4 5 6 7 8 9 101112131415161

Warp 1 Warp 2 Warp 3

Reduce required
memory bandwidth

S. Chilingaryan et. all19 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Using spatial locality

4
5 6 7 8
9 101112
13141516

1

16 iterations

Iteration
2

Iteration
3

Iteration
5

2 3

16 pixels

16 pixels

Layout Regs Occup. Hit Rate Bandwidth

Standard 32 100% 89 79.3 GT/s

Optimized 40 75% 96 117.5 GT/s

binsprojections

 6 bins

Texture
Memory

 6 bins

16 proj.

Better 2D texture cache locality with
16 projections computed in parallel

(16 sums are summed together after
processing all projections)

4
5 6 7 8
9 101112

13141516

1

16 iterations

Iteration
2

Iteration
3

2 3 16 pixels

16 projections
processed w

ith 256-thread block in parallel

S. Chilingaryan et. all20 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Faster reduction with shuffle instruction

Shuffle instruction introduced by Kepler architecture
allows fast exchange of information between threads
of the warp.

S. Chilingaryan et. all21 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Oversampling approach on Kepler

Optimize rounding routine
Pre-calculate and cache offsets

Slow performance of integer and rounding operations
makes Fermi oversampling algorithm slow.

16 proj.

Offset 1

Offset 2

proj_offset = b⌊ x●cos(α) – by●sin(α) + correction(α)⌋

4
5 6 7 8
9 101112

13141516

1 2 3

bx

by

On Fermi, for each block and projection we compute smallest-bin
offset on the fly by each thread. On Kepler instead we can:

S. Chilingaryan et. all22 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Looking for faster rounding on Kepler

s e e e e e e e e f f f f f f f f f

Exponent, 8 bits Fraction, 23 bits

031

….f =

IEEE 754
single-precision
floating point number

f = -1s• 2e-127•(1 + ∑f
i
•2i-23)

Only 23 significant positions, for
small positive numbers:
 f + 223 = 223•(1 + ∑f

i
•2i-23)

i.e. no fractional part

fp math rounding

round(f) = f + 223 - 223
(int)f = f + 223 – 0x4B000000

texture

We get faster rounding, but SFUs left unused and we got no
speed up...

S. Chilingaryan et. all23 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Reducing number of rounding operations

p240

p1 p17 ... p241

...

p15 p31 ... p255

p0 p16 ...

p17

...

p31

p16

warp1

warp2

warp16

Get all 256 projection offsets
at once and iterate 16 times
over 16 projections.

16 iterations

Iteration
2

Iteration
3

Iteration
5

4
5 6 7 8
9 101112
13141516

1 2 3

16 pixels

16 iterations

Iteration
2

Iteration
3

4
5 6 7 8
9 101112

13141516

1 2 3 16 pixels

16 projections
processed w

ith 256-thread block in parallel

On each iteration, the appropriate
offsets are shuffled to all threads of
the warp

shuffle broadcast

16 pixels

S. Chilingaryan et. all24 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Summary: 3 stages of oversampling

Work-group of 256 threads used to backproject area
of 32x32 pixels from 256 projections

p240

p1 p17 ... p241

...

p15 p31 ... p255

p0 p16 ... compute all offsets
work-items are
mapped linearly to all
projections.

192 bins

16 proj

cache data in shmem
warps are mapped to
projections and individual
work-items to its bins.

16 iterations
(only 16 projections

at once)

32 px

32 px

16

16

1
2

256 iterations
each processing a

single projection

3

interpolate pixels
work-items are mapped
to area 16x16 pixels and
proess 4 pixels at once

3 different mappings
for optimal
performance

S. Chilingaryan et. all25 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Performance of Back Projection

GTX280

GTX580

GTX680

0 20 40 60 80 100 120 140 160

Standard Linear Oversample Kepler Kepler Oversample

giga-interpolations per second
Modifications:

S. Chilingaryan et. all26 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Optimizing Filtering Step

Also
Pad data to a size equal to the closest power of 2
Batched processing

FFT library is optimized for complex-to-complex transforms while we are
dealing with real numbers.

a2 a3 a4 a5 a6 ...a1

projection 1

b2 b3 b4 b5 b6 ...b1

b1 a2 b2 a3 b3a1 b4 a5 b5 a6 b6 ...a4

projection 2

), Interleaved complex vector

f1 f2 f2 f3 f3f1 f4 f5 f5 f6 f6 ...f4

X
Filter

a2 a3 a4 a5 a6 ...a1 b2 b3 b4 b5 b6 ...b1

FFT(

real part
imaginary part

b1 a2 b2 a3 b3a1 b4 a5 b5 a6 b6 ...a4), Interleaved complex vectoriFFT(
=

Filtered projections

S. Chilingaryan et. all27 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Overall performance and scalability

1 2 3 4 5 6 7
0

500
1000
1500
2000
2500
3000
3500
4000
4500
5000

NVIDIA GTX Titan

Number of GPUs

M
B

/s

S. Chilingaryan et. all28 Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology

Summary

GT200
Base version
Uses texture
engine

Fermi
High computation power, but
low speed of texture unit
Reduce load on texture engine:
use shared memory to cache
the fetched data and, then,
perform linear interpolation
using computation units.

Kepler
Low bandwidth of integer inst-
ructions, but high register count
Uses texture engine, but
processes 16 projections at once
and 16 points per thread to
enhance cache hit rate

GCN
High performance of texture
engine and computation nodes
Balance usage of texture
engine and computation nodes
to get highest performance

VLIW
Executes 5 independent
operations per thread
Computes 16 points per thread
in order to provide sufficient
flow of independent instructions
to VLIW engine

+100%

+530% +95%

+75%

	Slide 1
	Slide 2
	Parallel Architectures
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

