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Fast
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Goals
»High speed tomography » Enable data driven control
» Increase sample throughput » Auto-tunning optical system
» Tomography of temporal processes » Tracking dynamic processes
» Allow interactive quality assessment » Finding area of interest
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IOptimizing for parallel architectures QAT
» Consists of SIMD-type Compute Units (CU)

» One instruction is executed on many data items
» Each CU able to execute several operation types
» But only FP additions/multiplications are fast

»Posses complex memory hierarchy
» Low Bandwidth-per-flop ratio and small caches
» Up to four different types of memory
» Optimal access pattern have to be followed

» Architectures vary drastically
» Sizes, speed, and structure of memories / caches
» Types and amount of provided processing units
» Balance of operation throughput
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Codes and algorithms have to be T
carefully optimized for the specific ———

: Compute Unit
arallel architecture
P 4 on Fermi
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I Memory model AT
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Device « Host Memory

Multiprocessor N — 6 GB/s (PCle X16 gen2) to
: 12 GB/s (PCle x16 gen3)

* Global Memory

— 100 — 300 GB/s with
latencies up to 1000 clocks

 Local Memory

Multiprocessor 1
— 1 -2 TB/s (total) with
latencies below 100 clocks

 Registers

1t — private to threads

« Caches

— L1/L2 cache

— Constant memory

Multiprocessor 2

Complex memory hierarchy consisting of 4 levels and with each level
one order of magnitude faster when previous!
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I Programming Model AT

||||||||||||||||||||||||||||||

Thread abstraction is used to split the problem space into the
independent GPU tasks

~All threads execute the same code (kernel)

~Task is defined by the linear or volumetric index of the thread
~GPU schedules threads in groups of fixed size (warp)

~ A user-defined block of threads is assigned to a specific CU
~Threads of the block may exchange data using CU shared

memory grid
= block

/e.g. resulting image is mapped o N | '

a 1-, 2-, or 3D grid of GPU threads {

and each pixel is computed by a N

thread with the index equal to pixel NN e

: : thread
. coordinates A\
| warp
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I Scheduling

Warp Scheduler

Warp Scheduler
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. Warp 1 instr 1 Warp 2 instr 1

3

? Warp 3 instr 1 Warp 3 instr 2
Y Warp 1 instr 2 Warp 4 instr 1

—

Core Core Core SFU

SFU LD LD
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Multiple warps on CU
executed in parallel

Independent instructions
executed in parallel

Warp 4 will be blocked for
a long time, but other
warps on CU will execute
and hide the latency

~Warps from several blocks are executed by CU in parallel

~ The number of currently resident warps is called occupancy

~ Occupancy is limited by available registers and shared memory
~ Suboptimal occupancy limits the instruction bandwidth

( For optimal performance we have to increase occupancy
and number of independent instructions
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| FBP Reconstruction SKIT
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1. Filtering
Multiplication with the configured filter in the Fourier space

2. BackProjection o
InS L] L
> 1. For each position we compute:

xecos(a) - yesin(a)

roj. O
Ero} 1 1 g g j g 2. Interpolate between neighboring bins
proj. 2 192345 3. Sum over all projection
' 4. The sum is the value of (x,y)

pro,a 1 2 3 45

\ xecos(a) - yesin(a)
(Xy)

For each texel of output volume
and for each projection we perform
a single linear interpolation

R
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I Texture Engine

Features:
« Spatial-aware cache
 Bi/tri-linear interpolation
 Normalized coordinates
 Different clamping modes

Applications:
 Linear interpolation, i.e. image
scaling

* Optimize random access to
multidimensional arrays

PolyMorph Engine

[vertox Feten | [rossonator [ Voeeer,

|Attribute Setup | | stream Output |
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I Filtered Back Projection
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Image Loader

Fetch slices
for processing
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Pool of Sinograms
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(host memory)

_ eg
nvibiA. || |
eon” | GEFORCE
| GTX 280M

Pool of CPU and GPU

AT
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Data Storage C>

Store results

processing threads

Pool of Vertical Slices

(host memory)

1%t Stage

NS

[r— .

of | < | GPU
9 gsreme= || thread
O
Q
0 .
||
K _’
Double
buffering

Filtering

2"! Stage
N °
Double
buffering

Texture
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I Performance of Texture Engine

10

GT280
$I(1):§ughput 930 GF
Texture Fill 48 GT/s
Rate
Ratio 19.3

S. Chilingaryan et. all
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GTXS580

1580 GF

49 GT/s

31.6



| Optimizing FBP for Fermi T
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16px v =xecos(a) - yesin(a)
max__(v)—min__ (V)< N2

NV2 <1.5N

xd 9|

Each block of threads accesses actually only 3 ¢ N/ 2 bins per projection

(3/2)*N texture

fetches
N? texture fetches l: N? interpolations
N 2 N
— 7 Shared %
Image Memory Image
Texture Texture
Standard Version Fermi-optimized Version
Texture engine is heavily loaded Both texture & computations engines are used
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Pixe

| to thread mapping QAT
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Processing 4 pixels per thread reducing amount of
texture fetches and hides operation latencies with
multiple independent operations (instruction

reordering).

bins

°
cf.:' Texture
=: Memory
>

y

oL ™ |

o E——

ol =

S. ]

[oud 9} |

Processing in multiple passes,
16 projections each

12

S. Chilingaryan et. all

Px. Fetches/px. Regs ShMem Occup. ILP
1 0.09375 26 1536 66% 1

4 0.046875 32 3072 66 % 4

Step1: filling shared memory Legend
Only 48 textdre fetches per Processed by a single
rojection
brol ;-6i thread block (16x16)
uy f()o 48 bins of a projection
E\ o required for current block
S x 16 of the projections
are \ : .
Memory : processed in a single pass
. Step2: integrating the volume 32 px
48 bins  32%interpolations per projection Volume - thr (1,1) - thr (2,1) thr (3,1)

B 2 thr 2,2) [ thr 3.2)
thr (1,3) [ thr 23) [ thr (3,3)

Institute for Data Processing and
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I Oversampling ST
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0 02505 0.75 112515 1.75 2 22525 275 3 Linear interpolation is
Bin 0 Bin 1 Bin2 - slow, and nearest
e | e | [ | neighbor is not precise
enough

With  oversampling the
texture engine is used to

interpolate 4 positions for
12 texture fetches per thread each projection bin and
shared near-neighbor interpolation
emory _
192 bins IS used then.
Method Fetches/lpx Regs ShMem Occup. Reads/px Flops/px
Linear 0.046875 32 3072 66% 2 7
Oversample 0.1875 42 12288 50% 1 4

T Institute for Data Processing and
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I Kepler: Fast Texture Engine is Back AT
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GT580 GTX680 Change
Texture Engine 49.4 GT/s 128.8 GT/s 2.6 x
Floating-point 16 x 32 x 8 x 192 x 1.006 194 x
operations 1.55 GHz GHz '
Irg[.?ger rrnL;.Itlﬁllc?tlon, 16 x 16 x 8 x 32 x o
operations, type 1,55 GHz 1,006 GHz '
conversions
Shared Memory 48 KB 48 KB 1
Blocks per SM 8 16 2
: 32K per SM, 64K per SM,
Registers s s 1

63 per thr. 63 per thr.
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I Default approach T
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bins

Texture Cache Hit Rate 89 %

Texture

noaloid

Suol

Memory Texture Throughput 79.3 GT/s
16 bins 16 bins

Theoretical Throughput  128.8 GT/s

LA N

1121372 516718 9/101112131411516

123 45(67 8 910111213141516
Block of 16x16 pixels

1. Up to 16 bins are accessed per warp
2. All threads are accessing a single texture row

Institute for Data Processing and
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I Optimizing the thread mapping QAT
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Block of 16x16 pixels
Wwaps 12 34 5/6 7 8 910111213141516

12345678 910111213141516

Wap1 12 34 56 7 8 910111213141516

i i i l i Up to 16 texture locations
v per warp.
1 % 34567 8 910111213141516 Texture

/ Less than 6 texture
locations per warp

7223/4/12341234 ‘
56 7856785678 :
910111291011129 101112 =008 =ILIEC
131415161314151613141516

Warp 1 Warp 2 Warp 3

T Institute for Data Processing and
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I Using spatial locality

AT
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bins Layout Regs Occup. Hit Rate Bandwidth
S |Texture Standard 32 100% 89 79.3 GT/s
% Memory Optimized 40 75% 96 117.5 GTls
ﬂ 16 pixels _
6 bi -
INS 6 bins 112134 S
N L co oo 567 8 lteration | lteration | = | S
> 9101112 2 3 5 8
S. : — 13141516 28
o
2,
lteration =N
5 16 iterations P
>®p1
2. O
=
(@]
. ' ks
1]2)3]4 N
Better 2D texture cache locality with g fomz teration| lteration |/ Z
. . . Q)
16 projections computed in parallel 13141516 -
(16 sums are summed_tog_ether after 16 iterations o)
processing all projections) '
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I Faster reduction with shuffle instruction AT
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warpld 0

1

2

3

4

5

6

7

1

i

1

1
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v+= shfl down (v, 4)

v+=_shfl down (v, 2)

v+=_shfl down(wv,1)

Shuffle instruction introduced by Kepler architecture
allows fast exchange of information between threads
of the warp.

S. Chilingaryan et. all
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I Oversampling approach on Kepler AT
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Slow performance of integer and rounding operations
makes Fermi oversampling algorithm slow.

~ W
o

floud 91

proj_offset = [bxecos(a) — byesin(a) + correction(a)]

On Fermi, for each block and projection we compute smallest-bin
offset on the fly by each thread. On Kepler instead we can:

~ Optimize rounding routine
~Pre-calculate and cache offsets

T Institute for Data Processing and
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I Looking for faster rounding on Kepler QT

Exponent, 8 bits Fraction, 23 bits ~  ommmmw
= - ) N IEEE 754
single-precision

f — s eeeeeeeef f fff fiff f ﬂoating pointnumber

31 — _4Se DE-127, e Ni-23 0

f = -1% 2912701 + 3fe24%0)

Only 23 significant positions, for
small positive numbers: round(f) = f + 22°- 2%

f+2% = 2%:(1 + 3fe2%) (int)f = f + 222~ 0x4B000000
I.e. no fractional part

*

SFUs (x4) LD/ST Units (x16)

fp math rounding texture

We get faster rounding, but SFUs left unused and we got no
speed up...
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I Reducing number of rounding operations Q\{IT

/N

Get all 256 projection offsets

lteration

2

Iteration

3

16 iterations

lteration
2

lteration
3

warp1  po /p16\ 0240 at once and iterate 16 times
over 16 projections.
Warp2 p1 | p17 p241 16 pixels
1234
5678
9101112
warp16 | p15 \p31/ p255 016 13141516
lteration
p17 5
-
shuffle broadcast
p31 1/2/3]4
8160171182
On each iteration, the appropriate 1disia
offsets are shuffled to all threads of

the warp
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I Summary: 3 stages of oversampling AT

||||||||||||||||||||||||||||||

Work-group of 256 threads used to backproject area
of 32x32 pixels from 256 projections

1 PO p16 .. p240 compute all offsets 16 iterations
p1 |p17 ... p241 work-items are Sy
only 16 projections
.. | . .. mapped linearly to all 2 (only af gncje)
p15| p31 | ... [p255 projections. w
| _ cache data in shmem
3 256 lterations warps are mappedto g
each processing a projections and individual™
single projection work-items to its bins. |
16 192 bins
B | ., interpolate pixels : ;
o g 5 work-items are mapped 3 dn‘fer.ent elPprinier
to area 16x16 pixels and | for optimal
> ' proess 4 pixels at once performance
pX

Institute for Data Processing and
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I Performance of Back Projection Aﬂ(“‘

GTX680

GTX580

GTX280

0 20 40 60 80 100 120 140 160

Modifications: giga-interpolations per second

M Standard M Linear ® Oversample Kepler B Kepler Oversample

25 S Chilingaryan et. all Institute for Data Processing and
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| Optimizing Filtering Step IT
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FFT library is optimized for complex-to-complex transforms while we are
dealing with real numbers.

projection 1 projection 2
a;aasasasag.. bib,bsb,bsbs...
| | real part
T v i imaginary part
FFT(|a, by a, bsas; bsa, b, as bsagbg ... ) Interleaved complex vector
X

fo fy fy £y f5 f5 £y f4 f5 f5 g fg ... Filter

IFFT( la, by a, b, as bsa, b, asbsagbg ... ) Interleaved complex vector

diaazasasas... b;b,b;b,bsDbg ... Filtered projections

» Also

» Pad data to a size equal to the closest power of 2
» Batched processing

26 S. Chilingaryan et. all
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I Overall performance and scalability AT
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MB/s

NVIDIA GTX Titan

5000

4500

4000

3500

3000

2500

2000

1500 o

1000 _—

500

5

6 7
Number of GPUs
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I Summary

O

GT200

Base version
Uses texture
engine

Karlsruhe Institute of Technology

-@

Fermi 1100%

High computation power, but
low speed of texture unit

use shared memory to cache
the fetched data and, then,
perform linear interpolation
using computation units.

Reduce load on texture engine:

o
Kepler +15%
Low bandwidth of integer inst-
ructions, but high register count
Uses texture engine, but
processes 16 projections at once
and 16 points per thread to
enhance cache hit rate

,@

vLw +930%

Executes 5 independent
operations per thread
Computes 16 points per thread
in order to provide sufficient
flow of independent instructions
to VLIW engine

28 S. Chilingaryan et. all

GCN 907

High performance of texture
engine and computation nodes
Balance usage of texture
engine and computation nodes
to get highest performance

Institute for Data Processing and
Electronics
Karlsruhe Institute of Technology
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