

Monte Carlo Pathfinding in Radio Astronomy

Hermann Heßling

GLOWSKA

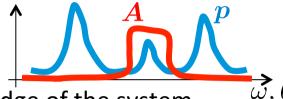
3. 6. 2016

-1

SKA Data Challenges

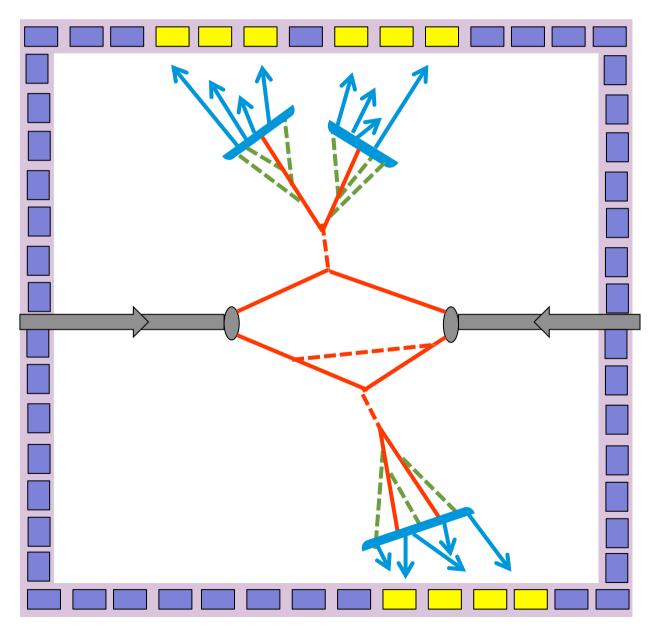
- Planning the German National SKA Data Centre
 - Cost of computing
 - Strong impact on construction costs
 - Determined mostly by processing power and growth of archive

$$\% C_{tot} \sim \alpha C_{CPU} + (1-\alpha) C_{arch}$$


- Impact
 - Only a small fraction of all "raw data" taken by the antennas can be stored in long-term archives
- Reducing the data volume
 - Developing algorithms for weeding out data of interest in near-realtime
 - Each key science project (EoR, pulsar, ...) demands its own solution
- Data analytics
 - Simply copying software from LOFAR not effective
 - SKA much more complex than LHC
 - o Growth of archive / "raw data rate": SKA ≥ 100 LHC

-1

Monte Carlo Simulation


Outcome of measurements is compared to expectation values of observables A

$$\langle A \rangle = \int A(\omega, \theta) p(\omega, \theta) d\omega d\theta$$

- The **probability distribution** p characterizes the knowledge of the system
 - Thermal equilibrium: $p \sim e^{-H/kT}$
 - Fitting models to data: $p(\omega, \theta) = p(\omega | \theta) \, p(\theta)$
 - o $p(\omega|\theta)$ is the likelihood function of some model distribution
 - ullet The prior p(heta) describes the initial knowledge of the parameter set heta
- Importance of Monte Carlo methods for evaluating expectation values
 - Scaling of error $\sim 1/\sqrt{N}$, N= number of random points: $(\omega_1,\theta_1),\ldots,(\omega_N,\theta_N)$
 - Independent of dimension of integral
 - Parallel computing
 - Many Monte Carlo algorithms are parallelizable
 - Finding "rare events" in large search spaces
 - Importance sampling

Monte Carlo Event Generators at LHC

"MCTruth" data

- Hard interaction
- Parton shower
- Hadronization
- ⇒ Probabilistic simulation of the final state

Simulated data

- Detector simulation
- ⇒ Comparison with experimental data

•1

Monte Carlo Event Generators at LHC

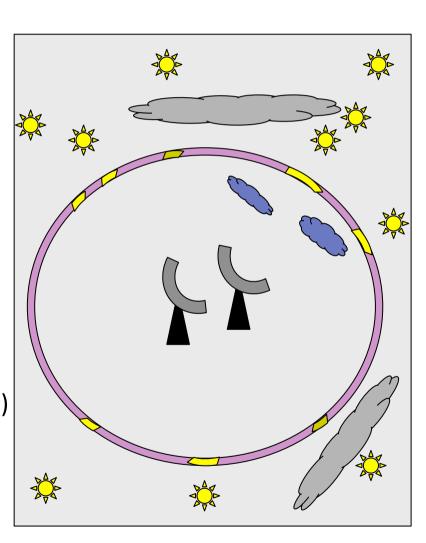
Theory

- Predicting final state
- Simulating background / noise

Experiment

- Optimizing trigger algorithms
 - ⇒ reducing data volume
- Determining influence of detector (e.g. dead material)
 - ⇒ estimating acceptance corrections
- Unfolding measured data to "hadron level"
 - ⇒ publishing "true" results

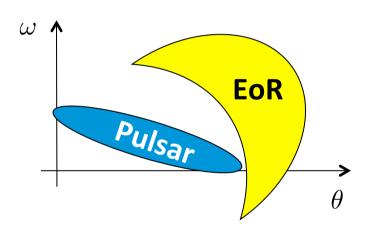
.1

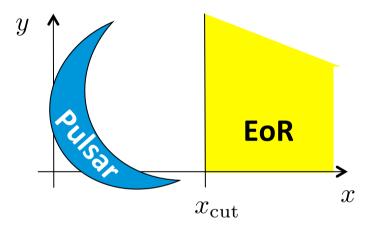

Monte Carlo Simulation at SKA

LHC

- Single source
 - Inside the detector
- Theory: QCD + QED + EW
 - Initial state known
- MC simulation of collision events
 - Several MC event generators

SKA


- Huge number of sources
 - Outside the celestial sphere (detectors)
- Theory: Maxwell equation with sources
 - + GRT
 - Boundary value problem
- Goal: MC simulation of the cosmos



-1

Monte Carlo Simulation at SKA

- Probability distribution $p(\omega, \theta)$ on the phase space
 - Specify "subregions of interest" for every key science project

- \blacksquare Determine deformation map $(\theta,\omega)\to (x,y)$ for applying "trigger cuts" on data
 - o LHC: e.g. cut on transverse energy of calorimeter cells, $\Sigma_i E_i \sin \theta_i \geq E_T$
 - $_{\rm o}$ SKA: cuts on functions of visibility data, e.g. $f_{\rm EoR}(u,v,w,V(u,v,w)) \geq x_{\rm cut}$

Monte Carlo Simulation

- New physics by simulating the background in dedicated regions of phase space
- Reducing data volume in near-realtime based on simulation of "trigger cuts"
 - Key science projects obtain a fixed share of long-term data archive