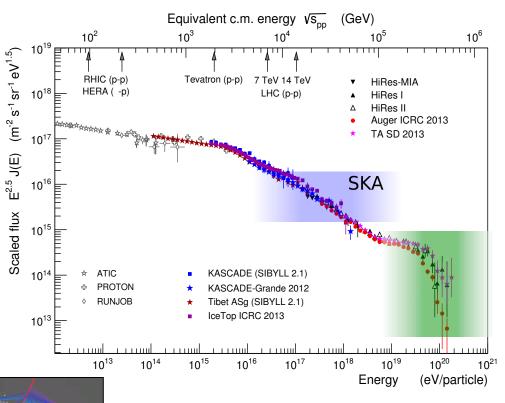
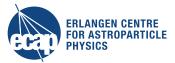

The lunar Askaryan technique with the SKA

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

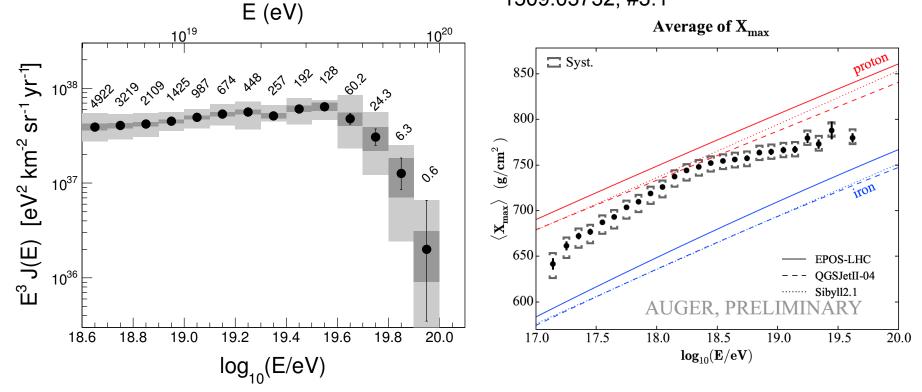
Clancy James On behalf of the SKA HECP Focus Group GLOWSKA 2016, KIT, Karlsruhe

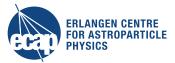



Ultra-high-energy cosmic rays

- The highest energies
 - EAS: 10¹⁷-10¹⁹
 - Lunar: >10¹⁹
- Pierre Auger Observatory
 - 3000 km²
 - Water-Cherenkov tanks
 - Fluorescence telescopes
 - Radio antennas

C.W. James, GLOWSKA 2016, KIT

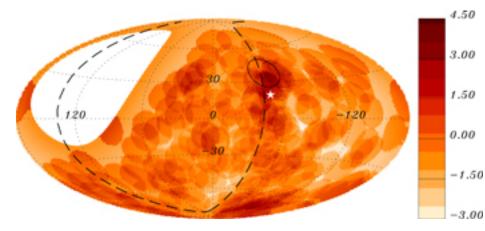

Energy spectrum and composition


• Spectrum

Aab et al., JCAP 08 (2015) 049

• Composition

A. Porcelli for Pierre Auger, arXiv: 1509.03732, #3.1



Arrival directions

- Arrival direction tests:
 - Blind search, correlation with AGN catalogues, Cen A
 - Most significant excess: Cen A at 15° scales (p-value 1.4%)
 - Best correlation with E_{CR} > 58 EeV
 - ~20 events/year

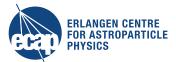
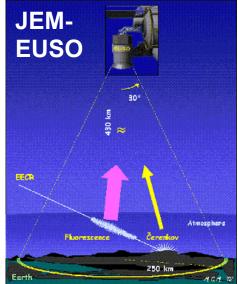

Excess map (12° smearing)

Table 1			
Summary of the Parameters of the Minima	Found	in	the
Cross-correlation Analyses			

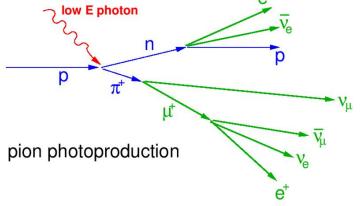
Objects	E _{th} (EeV)	Ψ (°)	D (Mpc)	\mathcal{L}_{min} (erg s ⁻¹)	f_{\min}	\mathcal{P}
2.000		.,		(erg 5)	1.5 10-3	240
2MRS Galaxies	52	9	90		1.5×10^{-3}	24%
Swift AGNs	58	1	80		6×10^{-5}	6%
Radio galaxies	72	4.75	90		2×10^{-4}	8%
Swift AGNs	58	18	130	10^{44}	2×10^{-6}	1.3%
Radio galaxies	58	12	90	10 ^{39.33}	5.6×10^{-5}	11%
Centaurus A	58	15			2×10^{-4}	1.4%


Aab et al., ApJ 804 (2015) 15

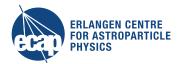


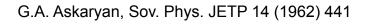
Prospects for improvement #1

- Some hints of excess at broad scales: more data can help
- Build a bigger detector!
- Options:
 - Larger ground array (Auger North)?
 - Go to space (JEM-EUSO)
 - Use the Moon!



Prospects for improvement #2


- UHE cosmic rays => UHE neutrinos
 - Photo-pion production threshold of UHE CR with CMB: ~5 10¹⁹ eV
 - These pions decay to produce neutrinos
- UHE neutrinos
 - Undeflected by magnetic fields
 - Not absorbed during propagation
 - Difficult to detect!
- 'Exotic' neutrino fluxes
 - Predicted by beyond-the-standard-model physics
 - Super-heavy remnants: decay to neutrinos, and perhaps cosmic rays
 - Currently disfavoured from UHE CR spectral downturn


Greisen PRL 16 (1966) 748; Zatsepin & Kuzmin, JETP Lett 4 (1966) 78; Berezinsky & Zatsepin, PLB 28 (1969) 423

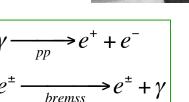
The Askaryan effect

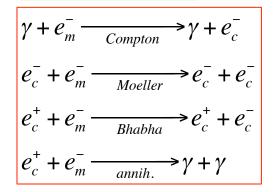
e

e

e

e

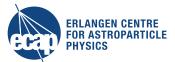

e


e

e

e

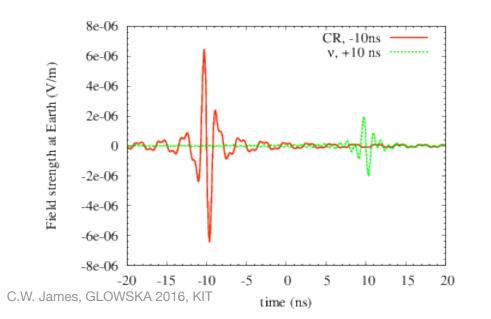
- Particle cascades in a medium
 - Cascades in medium entrain atomic electrons
 - Shower front builds up negative charge excess
 - Charge excess radiates coherently

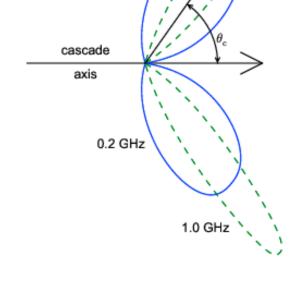


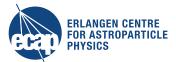
Shower front: excess electrons

CR energy EM energy EM particles Excess
$$e^{-}$$

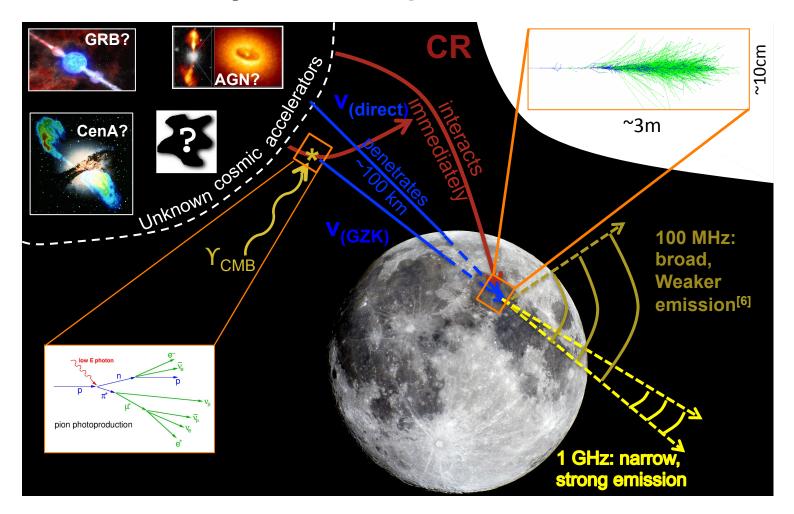
 $E_{0} = 10^{18} \text{ eV}$ $E_{EM} \sim 10^{18} \text{ eV}$ $N_{e^{-},e^{+},\gamma} \sim 10^{10}$ $n_{e^{-}} - n_{e^{+}} \sim 10^{9}$

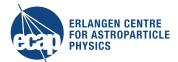

Shower wake:


positive ions



Askaryan pulses


- Phenomenology in the Moon
 - Emission peaked at Cherenkov angle (~56° in Moon)
 - 1 GHz: narrow, strong emission (cascade ~10cm wide)
 - 100 MHz: weaker, broad emission (cascade few m long)
 - Need more events: use SKA-low



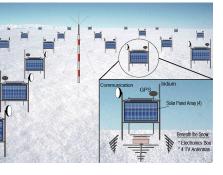
The Lunar Askaryan Technique

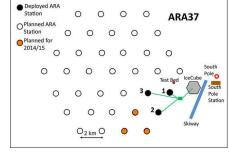
Not only ground-based telescopes


- LORD experiment
 - Experiment on-board Luna-GLOB
 - Less sensitivity but much closer!

Ryabov, Gusev, Chechin, J.Phys.Conf. 409 (2013) 012096

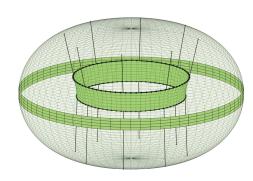
- Lunar radio astronomy explorer
 - Askaryan's original idea put antennas on the Moon!

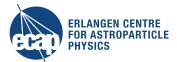

Not only the Moon...

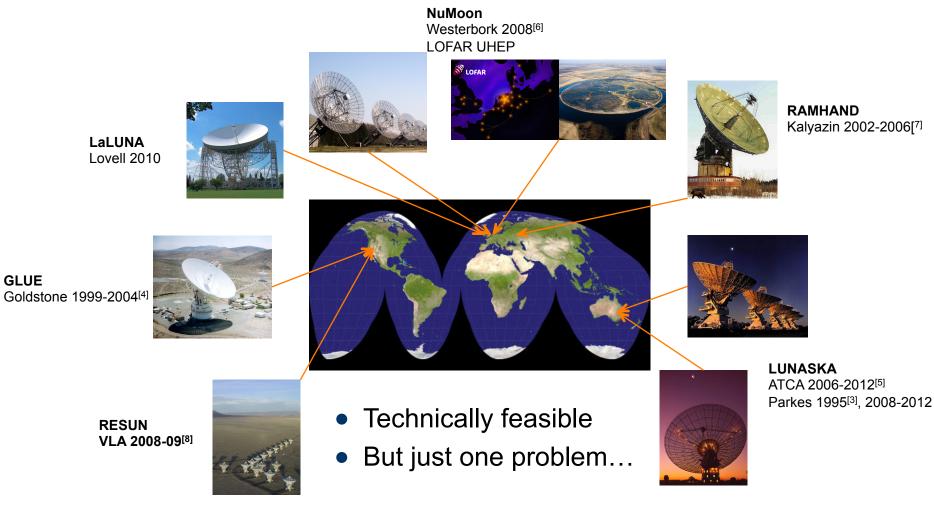

• Greenland & Antarctica

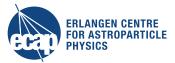
In-ice experiments: RICE -> ARA & ARIANNA

Ice (Antarctica & Greenland)

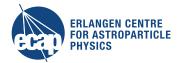





Balloons: ANITA -> Exavolt Antenna

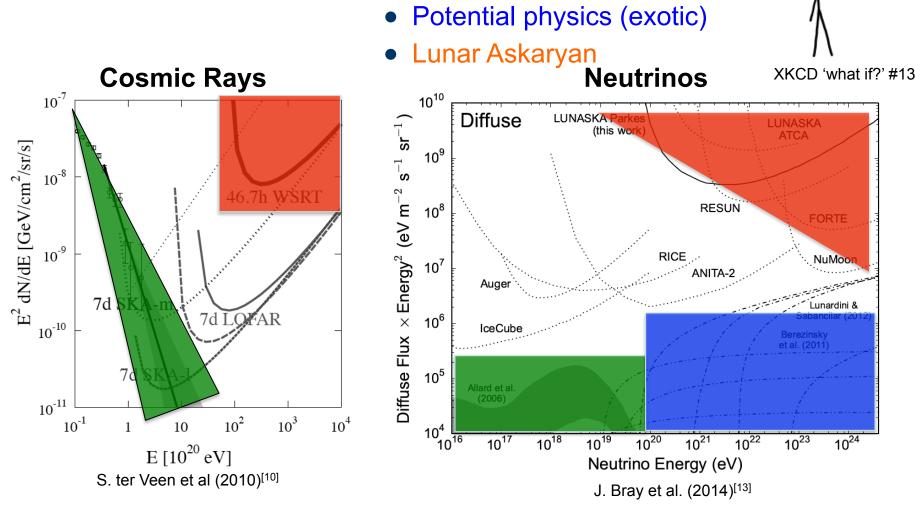


History of lunar experiments



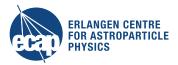
GLUE

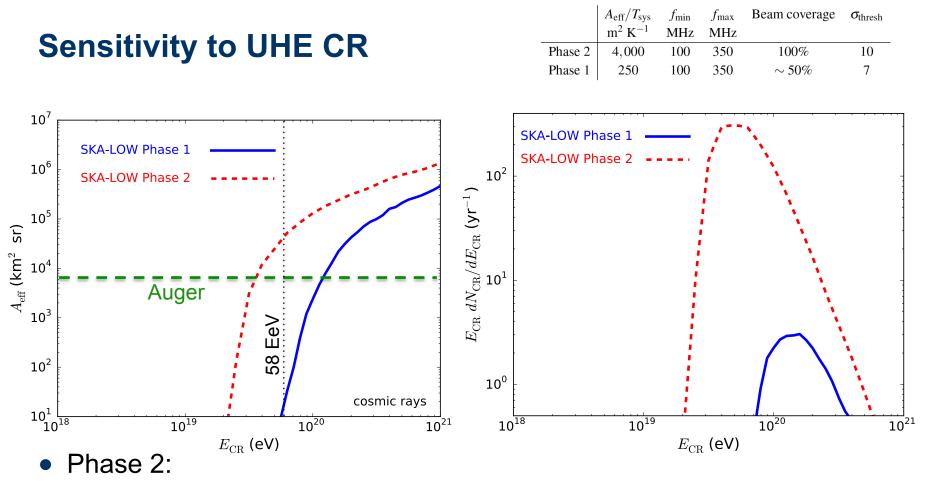
Limits to UHE particle fluxes from past experiments


Current limits only competitive at 10²³ eV (NuMoon) **Cosmic Rays Neutrinos** 10¹⁰ 10^{-7} Diffuse LUNASKA Parkes LUNASKA Diffuse Flux $\,\times\,\text{Energy}^2$ (eV $m^{-2}~\text{s}^{-1}~\text{sr}^{-1}$ (this work) ATCA 10⁹ E² dN/dE [GeV/cm²/sr/s] 10⁻⁸ 46.7h WSRT RESUN 10⁸ FORTE 10⁻⁹ RICE NuMoon 10^{7} Auaer Lunardini & 7d SK -m Sabancilar (2012) 10⁶ 7d LOFAR IceCube 10^{-10} Berezinsky et al. (2011) 10⁵ 7d \$ Allard et al. (2006)10⁻¹¹ 10⁴ 10¹⁶ 10^{-1} 10^{3} 10^{2} 10^{4} 10²³ 1 10 10¹⁸ 10^{21} 10¹⁷ 10²⁰ 10²² 10²⁴ 10^{19} $E [10^{20} eV]$ Neutrino Energy (eV) S. ter Veen et al (2010)^[10] J. Bray et al. (2014)^[13]

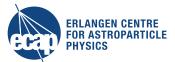
WHAT IF WE TRIED

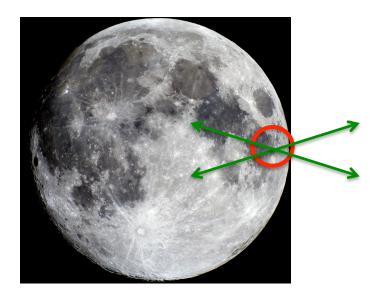
MORE POWER?


Simplified version

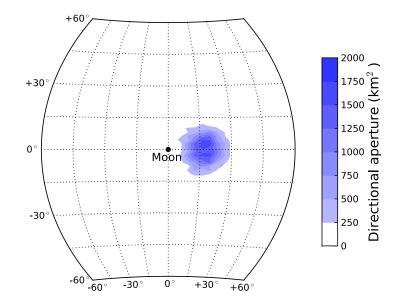


(CR flux)

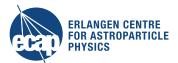

Known/expected physics



- Aeff >100,000 km² sr at 10²⁰ eV
- 50 UHE CR yr⁻¹ at E>56 EeV (28% lunar visibility at 30° elev limit)
- 2-3 x Auger, higher mean energy (more directional information) C.W. James, GLOWSKA 2016, KIT



Angular resolution


Instantaneous sensitivity of the SKA-Moon detector

- Signal strength: 10σ (±1)
- Polarisation: 5° (asin $1\sigma/10\sigma$)
- Inner 10km : 0.5' at 100 MHz

- 'Resolution': ~5° region
- Any explicit reconstruction should do better!

Science goal – Phase 2

- Measure an unprecedented number of UHECR
- Obtain 'sufficient' resolution to resolve UHECR sources
- 5° is not great, but...
 - Cen A is ~5°x5°
 - Virgo cluster is O~5°-10° diameter
 - Bending of protons: ~3°
 - Auger sig at 15°
- Caveats:
 - No composition
 - Energy resolution?

Image courtesy L. Feain & ATNF CSIRO

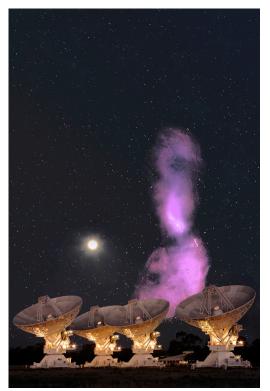
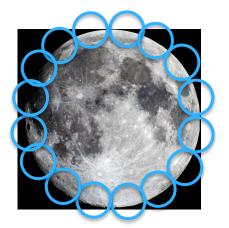


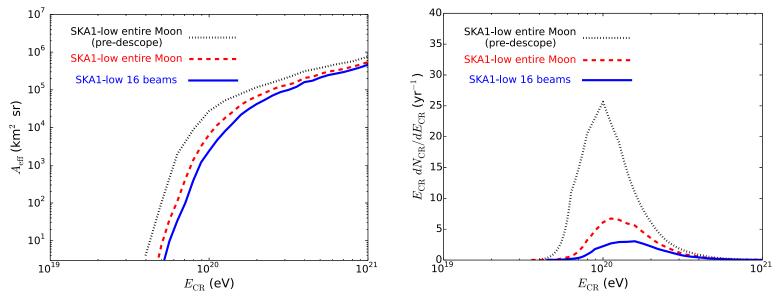
Image courtesy C. Mihgos & EUSO



Limits w 1000 hr 10⁹ 10^{7} ANITA SKA-LOW Phase 1 **SKA-LOW** 10^{6} Phase 1 10^{8} SKA-LOW Phase 2 sr^{-1}) RICE 10⁵ S^{-1} $A_{ m eff}$ (km $^2\,$ sr) 10^{7} (eV m^{-2} 10⁴ top-down models 10^{6} neutrino Auge SKA-LOW 10³ Φ_{ν} Phase 2 E_{ν}^2 10^{5} Cosmogenic 10² neutrinos neutrinos $10^1 \stackrel{\text{\tiny L}}{10^{19}}$ 10^{4} 10²⁰ 10²² 10^{16} 10^{18} 10^{20} 10²¹ 10²³ 10^{17} 10¹⁹ 10²¹ 10²² $10^{\overline{23}}$ 1024 10²⁴ E_{ν} (eV) E_{ν} (eV)

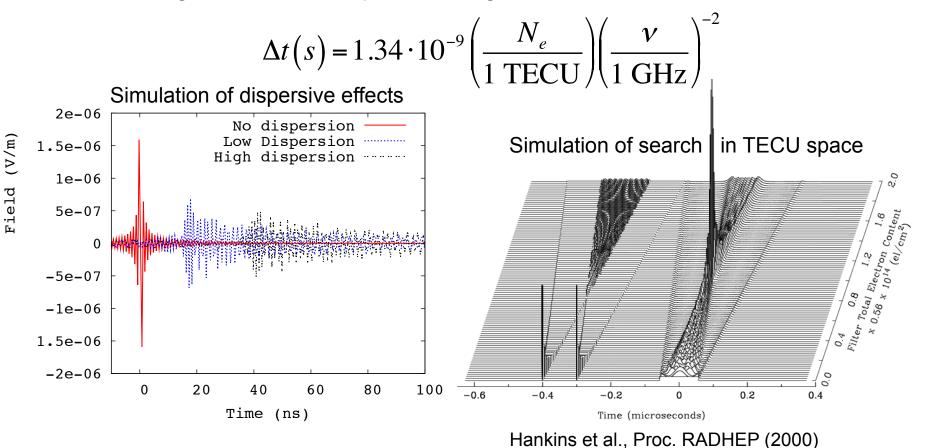
- Not sensitive to GZK leave this to ARA & ARIANNA
- Strong constraints on remaining top-down models
- Potential science goal of Phase 1 KSP

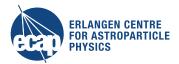

Sensitivity to UHE neutrinos


Observations with SKA-low phase 1

Sensitivity and beamforming

- Fully-coherent "array" beams covering lunar limb
 - Nbeams ~ baseline^2
 - Limit this to the core
 - Buffer remote station data
 - Phase 1: PBF gives 16 beams (place on Moon)





Dedispersion

• For ns signals, the ionosphere is significant!

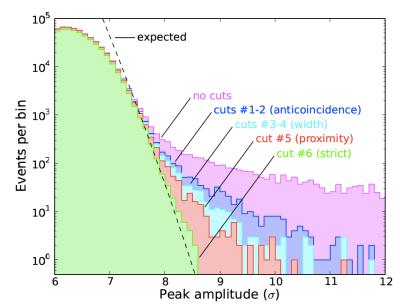
C.W. James, GLOWSKA 2016, KIT

ATCA beam

half-limb

Cen A

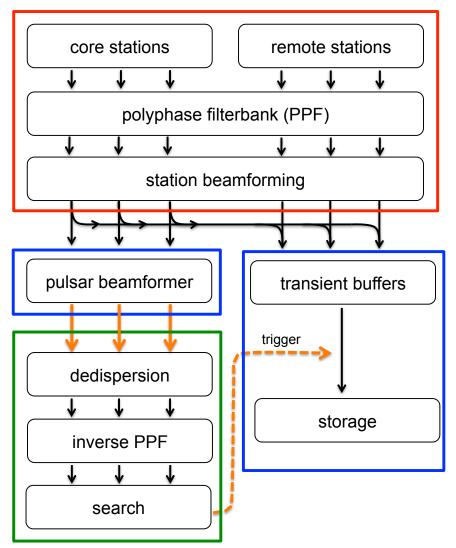
limb

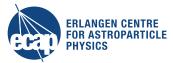

Parkes beams


limh

Coincidence logic

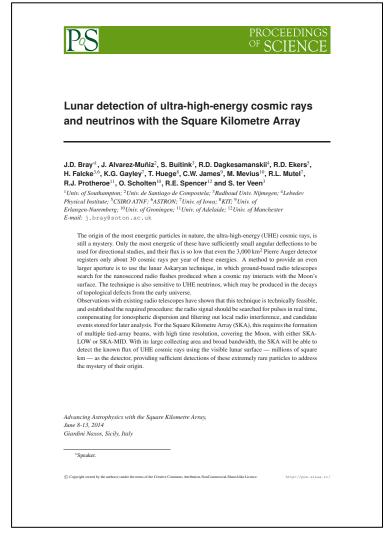
- Cuts:
 - Real-time veto
 - Offline veto
 - Shape-based
 - Pulse-train
 - Strict anti-coincidence
- Parkes:
 - Noise floor achieved!
 - 85.5% efficiency
- SKA:
 - Less noise: more efficient
 - More beams: better veto

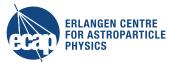

Bray et al, Astropart. Phys. 65 (2015) 22



Data path – phase 1

- Required data flow
 - Standard imaging observations
 - Accepted ECPs
 - Dedicated lunar hardware
 - Changed interfaces
- Dedicated hardware:
 - Dedisperses signal
 - Reforms time-domain signal
 - Performs signal search
- Subject of ECP 150013 (stage 4)

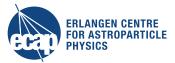

Project


• SKA science chapter:

J. D. Bray, et al. Lunar detection of ultra-high-energy cosmic rays and neutrinos, aska.conf, 144 (2015).

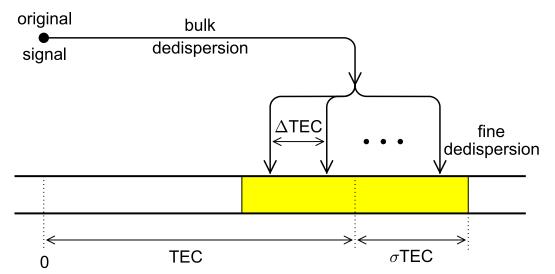
arXiv:1408.6069B

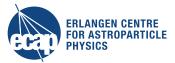
- SKA high-energy cosmic particles focus group
- Workshop at Jodrell Bank:
 - Cosmic 2015
- Engineering change proposals:
 - ECP 150013



Conclusion

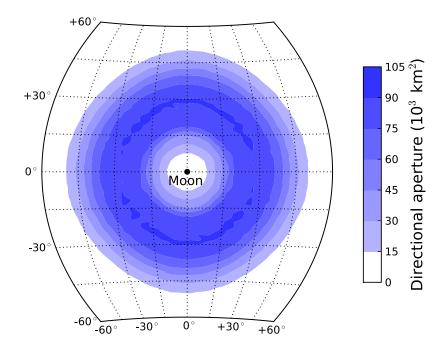
- Lunar Askaryan technique with the SKA can help solve the UHE cosmic ray mystery
- SKA high-energy cosmic particles focus group formed (together with EAS project)
- Proof-of-principle observations performed we know what we have to do, and how to do it
- Fingers crossed while ECPs are evaluated
 - If "no" wait for phase 2? Upgrades? First obs with other telescopes?
 - If "yes" we need to get to work quickly!




backup

Dedispersion search

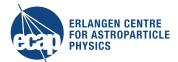
- Quasi-realtime ionospheric monitoring: aim for STEC w/in 1 TECU
- Perform bulk dedispersion on channelised (pre-beamformed) data
- Use FIR templates in beamformed data to scan remaining STEC space
- Worse TEC estimate: need longer FPGA taps (expensive), more false triggers (reduces sensitivity)



Coverage

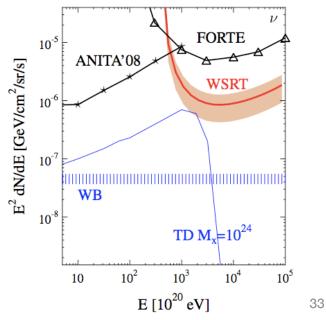
• Instantaneous sensitivity of the SKA-Moon detector

- Sources in range:
 - Cen A
 - M87
 - Sgr A*
 - ...


Test-bed: NuMoon at LOFAR

- LOFAR's 'UHEP' mode
 - Special mode of LOFAR's central processor
 - Central 'superterp': form 50 coherent beams to cover the Moon
 - Re-form full time-domain signal
 - Generate trigger, and dump data from transient buffer boards (TBBs)

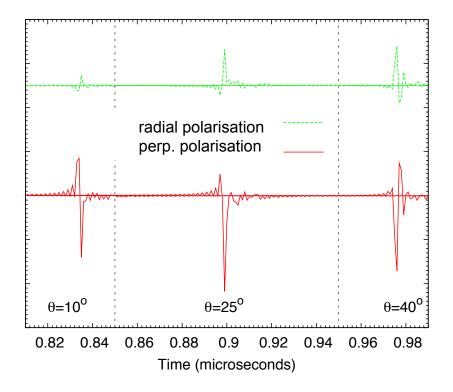
Distant station

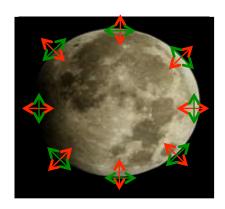

NuMoon at WSRT (2006-2007)

Scholten et al., PRL 103 (2009) 191301

- Westerbork Synthesis Radio Telescope
 - 50hr observations
 - 115-180 MHz in 4 bands
 - Coherent beamforming of 11 dishes
 - Recorded all data for later analysis no triggering!

 Obtained best limit over all experiments at ultra-high energies





What does the signal look like?

• Simulations (inc surface roughness) of signals using 1-2 GHz b/w

