

Shower universality @ Auger

Alexander Schulz, KIT 21.09.2016 HAP Workshop Topic 2 Erlangen, 21 – 23/09/2016

The Pierre Auger Observatory

Measurement of UHECRs using a *hybrid approach* with **5 FD buildings** and ~**1700 SD WCDs**

Standard air shower reconstruction

Standard SD air shower reconstruction: based on an empirical description of the lateral distribution

Event discrimination of different elements

- Seperation of different elements in a plane spanned by X_{max} and R_{μ}
 - Event-by-event probabilities for a certain primary type can be calculated
 - Large overlap of intermediate elements, but light and heavy can be seperated
- Plots using QGSJet-2.4 simulations; reference model: QGSJet-2.3 proton
- Universality gives us a way to get the information using only the SD

The basic idea of shower universality

 Fluctuations in the shower development at UHECR energies are small enough to achieve a "universal" shower description

 $N_{\max} \propto E$, $\langle X_{\max} \rangle \propto \ln A$, $\langle X_{\max} \rangle \propto \ln E$

Normalized w.r.t. total energy deposit

The physics behind shower universality

Scaling with the muon content

21.09.2016

Shower components at Auger observation level

QGSJet-2.3, EPOS-1.9 simulations of proton, carbon, iron at energies > 50 EeV

Shower development of the signals

Distance to the shower maximum ΔX has main impact on the signal size

A detailed description of air showers

 $S = S(\Delta X, E, R_{\mu}, r)$

- Model of the longitudinal and lateral signal development
- Total signal:

Sum of the 4 signal components

- Model of particle arrival times for the four components
- First particle arrival times: Spherical shower fronts (origin depends on particle type)

A model of signal arrival times

- Description of average time traces by log-normal distributions (mean m and width s)
 - QGSJet-2.3, EPOS-1.9 simulations of proton, carbon, iron, energies 0.1 – 100 EeV

$$f(t|m,s) = \frac{1}{t s\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\ln(t/ns) - m}{s}\right)}$$

muons

main electromagnetic shower

Average time delay

 Similar dependencies of the average time delay of different particle components on the distance to the shower maximum (widths exhibit different behaviors)

21.09.2016

Air shower reconstruction with SD universality

- Make use of full SD data to extract mass information
- Unbiased reconstruction of the shower core and arrival direction
 - Asymmetries in the shower development naturally included

- At energies > 10 EeV: unbiased reconstruction of the depth of shower maximum using only SD information!
 - + Relative muon number

Reconstruction quality

- Resolution in X_{max} on the order of 20 g/cm² achievable at the highest energies
 - Depends on primary particle due to (mostly) size of muon content
- Unbiased estimation of the relative muon content

Further applications of universality

- Determination of the energy spectrum independent of the standard reconstruction
- Search for photons, neutrinos, exotics...
- Compare models to data and learn more about hadronic interactions

AugerPrime

- Measurement of different particle components with the combination of WCD + SSD
 - We can constrain and tune universality models with data!

 \rightarrow More powerful physics-based air shower reconstruction

Summary and outlook

- Full description of air shower signals and times following the paradigm of shower universality
- Independent, physics-based reconstruction of air showers
 - Accurate estimation of the depth of shower maximum, energy and relative muon content
- Estimation of the primary mass based on statistical averages

or using mass discrimination on event-by-event basis (i.e. fisher analyses)

- Reconstruction of the primary flux independent of the standard method
- Universality will be a powerful tool together with the upgraded detectors of AugerPrime
- Further applications to search for photons, neutrinos etc.

Backup

Separation of hadron jets

Signal model residuals

Two different reconstruction types

Iterative reconstruction

- Quantities are fit in separate stages 1) energy, core 2) Xmax, timing 3) ...
- Makes use of constraints to results of the SD reconstruction and models derived from golden hybrids
- Better resolution of rec. quantities
- Not all correlations are taken into account, outliers

Classic reconstruction

- Only one reconstruction stage
 - All quantities except the primary energy are simultaneously fit (energy is fixed to SD result)
- Correlations are taken into account
- Needs large number of candidate stations of >7
- Reconstruction biases below 10 EeV, large resolutions

Auger Infill WCD SD with SSD, Amiga

