

Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum

M. Niechciol¹ for the Pierre Auger Collaboration ¹Department Physik, Universität Siegen

OBSERVATORY

HAP Workshop Topic 2 | The Non-Thermal Universe (Erlangen) 21.09.2016

Bundesministerium für Bildung und Forschung

Allianz für Astroteilchenphysik

21.09.2016

M. Niechciol | HAP Workshop Topic 2 (Erlangen)

Pierre Auger Observatory

- Located in the Pampa Amarilla near Malargüe, Argentina
- Hybrid concept: two independent and complementary detector systems
- Surface detector (SD)
 - 1660 water-Cherenkov detector stations set up on a hexagonal grid
 - 1.5 km distance between the individual stations
 - Total area covered: more than 3000 km²
- Fluorescence detector (FD)
 - 27 fluorescence telescopes
 - 4 locations at the border of the SD array

- SD: detect charged particles from an air shower through Cherenkov light in the detector stations
 - Measure the lateral distribution of the particle density at ground level
 - **Duty cycle**: ~100 %
 - Relevant observable here: S₁₀₀₀, i.e. the interpolated signal in the SD stations at a distance of 1000 m from the shower axis
- FD: detect an air shower through fluorescence light produced in the atmosphere
 - Measure the longitudinal development of the air shower in the atmosphere
 - Measurements only possible in clear, moonless nights: duty cycle ~13 %
 - Relevant observable here: X_{max}, i.e. the atmospheric depth of the shower maximum

21.09.2016

UHECR composition

• Mean and variance of lnA derived from the measured X_{max} distributions as a function of energy as published by the Auger collaboration:

- Results depend on the hadronic interaction model used to interpret the measurements
- Aim of this analysis: estimate mass dispersion near the ankle (lg(*E* [eV]) ≈ 18.7) in a less model-dependent way

The key idea (I)

- Correlation between the observables X_{max} and S₁₀₀₀ depends on the purity of the primary beam [P. Younk, M. Risse, ApP 35 (2012), 807]
 - Use scaled observables (marked with an asterisk) to remove zenith angle and energy dependencies: X_{max} scaled to 10 EeV, S₁₀₀₀ scaled to 10 EeV and 38°

• Pure composition \rightarrow correlation \gtrsim 0

The key idea (II)

- Correlation between the observables X_{max} and S₁₀₀₀ depends on the purity of the primary beam [P. Younk, M. Risse, ApP 35 (2012), 807]
 - Use scaled observables (marked with an asterisk) to remove zenith angle and energy dependencies: X_{max} scaled to 10 EeV, S_{1000} scaled to 10 EeV and 38°

- Pure composition \rightarrow correlation \gtrsim 0
- More mixed composition \rightarrow more negative correlation

Correlation in data

- Use 8 years of data (12/2004 12/2012)
 - Energy range lg(*E* [eV]) = 18.5 19.0, zenith angle range 0 65°
 - 1376 high-quality events
- Use ranking coefficent r_G to quantify the correlation

- Correlation is significantly negative
- Systematic effects play only a minor role $\sigma_{syst}(r_G) < 0.01$
 - *r*_G is invariant to additive and multiplicative scale transformations

Comparison to pure beams

 $r_{\rm G}(X_{\rm max}^*, S^*(1000))$ for protons Epos-LHC QGSJetII-04 Sibyll 2.1 0.00 +0.08 +0.07 difference to data $\approx 5\sigma \qquad \approx 8\sigma \qquad \approx 7.5\sigma$ difference is larger for other pure beams

• Conclusion: primary composition around the "ankle" is mixed!

Determine mass dispersion $\sigma(\ln A)$ (I)

• Simulate different mixtures of p, He, O and Fe and determine the expected correlation

UNIVERSITÄT

Determine mass dispersion $\sigma(\ln A)$ (II)

• Comparison to the value of *r*_G that was determined from data:

- Result (quite independent from the hadronic interaction model): $\sigma(\ln A) = 1.35 \pm 0.25$

Summary

- The correlation between X_{max} and S₁₀₀₀ has been studied to provide a less model-dependent estimate of the primary composition around the "ankle" in the cosmic-ray energy spectrum
- Significantly negative correlation is found in data:

$$r_{\rm G} \left(X_{\rm max}^*, S^*(1000) \right) = -0.125 \pm 0.025$$

for $\lg(E \ [eV]) = 18.5 - 19.0$

- Difference to the expectation for pure primary beams is larger than 5σ: the primary composition around the "ankle" is mixed!
- **Dispersion of masses** in the primary beam compatible with the observed correlation in data (within the interaction models used):

$$\sigma(\ln A) = 1.35 \pm 0.25$$

• **Results are robust** against experimental uncertainties in the observables and moderate modifications of the hadronic interactions

Backup

Uncertainties in hadronic models

Can one get $r_{\rm G}(X^*_{\rm max}, S^*(1000)) < 0$ for pure protons?

Change proton-air interactions (study with CONEX 3D)

[T. Bergmann et al., ApP 26 (2007) 420, R. Ulrich et al., PRD 83 (2011) 054026]

The modification factor ($f_{19} = 1.5$: increase up to factor 1.5 at 10 EeV)

$$f(E) = 1 + (f_{19} - 1) \frac{\lg(E/1 \text{ PeV})}{\lg(10 \text{ EeV}/1 \text{ PeV})}$$

Modified parameters (for Epos-LHC)

- cross-section
- pion charge ratio

- elasticity
- multiplicity

 $r_{\rm G}$ changes by $\lesssim 0.03$

Possible under-production of muons by hadronic models?

[G. Farrar for the Pierre Auger Collaboration (2013) arXiv:1307.5059, A. Aab et al., PRD 91 (2015) 032003]

re-weighting of muons at ground by factor 1.3: $r_{
m G}$ decreases by $\lesssim 0.03$

changes are small compared to difference between data and protons

[A. Yushkov, ICRC 2015]

Backup

Uncertainties Some of the checks for $r_{\rm G}(X^*_{\rm max}, S^*(1000))$

- different FD telescopes
- different time periods
- smaller angular ranges
- smaller energy ranges
- variations in event selection
- \blacktriangleright changes of energy, $X_{\rm max}$, S(1000) scales
- ► ad hoc energy and zenith angle dependent biases in X_{max} (up 10 g/cm²) and S(1000) (up to 10%)

systematic error on $r_{\rm G}$ estimated to be 0.01

statistical uncertainty $\sigma_{\rm stat}(r_{\rm G}) \approx 0.9/\sqrt{N}$ (sample of N events) (obtained using dedicated MC studies)

for data $\sigma_{
m stat}(r_{
m G})pprox 0.9/\sqrt{1376}pprox 0.024$

[A. Yushkov, ICRC 2015]