

PIERRE AUGER observatory

UHE neutrino follow-up of Gravitational Wave events with the Pierre Auger Observatory

Michael Schimp on behalf of the Pierre Auger Collaboration

September 22, 2016

bmb+f

Großgeräte der physikalischen Grundlagenforschung

LIGO GW Events (GW150914 & GW151226) • Binary BH mergers @ $d_{L} \sim 400$ Mpc

• $E_{GW} > M_{\odot}c^2$ (~10⁵⁴ erg)

- Fermi GBM detection 0.4 s after GW150914, compatible direction
- No prompt PeV ν after GW150914 (IceCube, ANTARES)
- UHE (EeV) v emission predicted (Vietri, Waxman, Murase)

Pierre Auger Observatory surface detector: Large acceptance

\rightarrow Well suited for UHEv search!

UHE neutrino follow-up of GW events with the Pierre Auger Observatory Michael Schimp | HAP Workshop Topic 2 | The Non-Thermal Universe | Erlangen | September 22, 2016

Pierre Auger Observatory surface detector: Large acceptance

\rightarrow Well suited for UHEv search!

UHE neutrino follow-up of GW events with the Pierre Auger Observatory Michael Schimp | HAP Workshop Topic 2 | The Non-Thermal Universe | Erlangen | September 22, 2016

6

BERGISCHE

UNIVERSITÄT

WUPPERTAL

Pierre Auger Observatory surface detector: Large acceptance

\rightarrow Well suited for UHEv search!

UHE neutrino follow-up of GW events with the Pierre Auger Observatory Michael Schimp | HAP Workshop Topic 2 | The Non-Thermal Universe | Erlangen | September 22, 2016

BERGISCHE

UNIVERSITÄT

WUPPERTAL

UHE Neutrinos In The Pierre Auger Observatory

UHE neutrino follow-up of GW events with the Pierre Auger Observatory Michael Schimp | HAP Workshop Topic 2 | The Non-Thermal Universe | Erlangen | September 22, 2016

UHE Neutrinos In The Pierre Auger Observatory

UHE neutrino follow-up of GW events with the Pierre Auger Observatory Michael Schimp | HAP Workshop Topic 2 | The Non-Thermal Universe | Erlangen | September 22, 2016

GW Follow-Up

No candidate in [–500 s, 1 day] around GW events

"Prompt" / "afterglow"

UHE neutrino follow-up of GW events with the Pierre Auger Observatory Michael Schimp | HAP Workshop Topic 2 | The Non-Thermal Universe | Erlangen | September 22, 2016

No candidate in [–500 s, 1 day] around GW events

- \rightarrow Calculate **exposure** taking into account
 - Time-dependent aperture (area x solid angle)
 - v-nucleon cross section + efficiencies (E, δ)

No candidate in [–500 s, 1 day] around GW events

- \rightarrow Calculate **exposure** taking into account
 - Time-dependent aperture (area x solid angle)
 - v-nucleon cross section + efficiencies (E, δ)
- → Calculate upper limits on energy radiated in UHE ν (δ) (E⁻² spectrum)

Results & Conclusions

GW Follow-Up Results

UHE neutrino follow-up of GW events with the Pierre Auger Observatory Michael Schimp | HAP Workshop Topic 2 | The Non-Thermal Universe | Erlangen | September 22, 2016

BERGISCHE UNIVERSITÄT WUPPERTAL

GW Follow-Up Results

Most stringent: 15% of GW energy into UHEv

 → Kotera, Silk: 3% of GW energy needed for UHECR to explain their flux
If 3% of GW energy into UHEv
→ ~ 1 event in our search (E⁻²)

 \rightarrow We need

- More powerful GW events
- More precise distance measure
- More sensitivity to UHEv

GW Follow-Up Results

Most stringent: 15% of GW energy into UHEv

 → Kotera, Silk: 3% of GW energy needed for UHECR to explain their flux
If 3% of GW energy into UHEv
→ ~ 1 event in our search (E⁻²)

→ We need

- More powerful GW events
- More precise distance measure
- More sensitivity to $UHE\nu$

Also Kotera, Silk:

Prediction of **diffuse** UHEv flux from inferred BH merger population with 3% UHECR production efficiency:

- E² dN/dE ~ 8.3 x 10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ × f_y x
- Auger data up to 2013: $E^2 dN/dE < 6.4 \times 10^{-9} GeV cm^{-2} s^{-1} sr^{-1}$

- UHECR production efficiency < 3% • Inefficient charged pion (\rightarrow neutrino) production, $f_v < 2$ • Unfavorable source evolution

17

 ν optical

depth

Redshift

loss /

source

evolution

The End —Questions?

21

BERGISCHE UNIVERSITÄT WUPPERTAL

Binned Diffuse Flux Limits (Phys Rev D 91, 092008 (2015))

UHE neutrino follow-up of GW events with the Pierre Auger Observatory Michael Schimp | HAP Workshop Topic 2 | The Non-Thermal Universe | Erlangen | September 22, 2016

UHE Photon Background

Earth skimming events dominated by v_{τ}

- ν interaction enhanced in Earths crust (producing e, μ , τ , nuclear fragments)
- Only τ can travel long distance through Earth and induce EAS (by decaying after ~ 48 km @ 1 EeV)

No event after <AoP> cut \rightarrow calculate exposure \rightarrow flux limit ~ event count limit / exposure

UHE neutrino follow-up of GW events with the Pierre Auger Observatory Michael Schimp | HAP Workshop Topic 2 | The Non-Thermal Universe | Erlangen | September 22, 2016

