The multi-messenger picture

Markus Ackermann

HAP Workshop The non-thermal universe Erlangen, 21.09.16 - 23.09.16

The cosmic-ray puzzle.

What are the processes that drive the universe so far out of thermal equilibrium and in which cosmic environments do they happen ?

Energy densities in the Milky Way

	Energy density	Milky Way-like spiral galaxy
Cosmic rays	0.8 eV / cm ³	
CMB	0.3 eV / cm ³	
Starlight	0.5 eV / cm ³	
Magnetic fields	~ 0.3 eV / cm ³	
Gas pressure	~ 0.5 eV / cm ³	

Cosmic rays

- **heat** the interstellar gas
- **Interact** with the magnetic fields
- influence star formation
- → They are important for Galaxy dynamics

> Three messengers can be used to study cosmic rays

> ... you all know the advantages / limitations of each messenger.

Specific questions addressed by multi-messenger astronomy

Is the CR spectrum universal in the Milky Way ?

> Harder spectrum in the inner galaxy due to spatial variations of diffusion properties.

- > Better description of Fermi LAT / Milagro data.
- Neutrino telescopes can provide constraints/measurements at tens to hundreds of TeV
 Markus Ackermann | 23.09.2016 | Page 6

Is the CR spectrum universal in the Milky Way?

- > No evidence of enhanced emission from the Galactic plane
- > Based on 700.000 muon tracks and 7 years of IceCube data.
- > But limits yet to weak to really constrain models.
- > less than 16% of the observed cosmic neutrino flux correlated with galactic plane.

Low significance Galactic plane excess.

Specific questions addressed by multi-messenger astronomy

Markus Ackermann | 23.09.2016 | Page 9

The cosmic-ray / gamma / neutrino connection

- Cosmic rays interact with a target medium close to the source.
- v / γ production via p-p or p-γ collisions
- Reprocessing of γ rays to GeV energies.

TeV-PeV Neutrinos

The cosmic-ray / gamma / neutrino connection

> Cosmic rays interact (extragalactic) with a target medium **PeV-EeV** cosmic rays Target medium close to the source. р p-p collisions > v / γ - production via π+/- π^0 Extragalactic p-p or p-γ collisions $E_{\gamma} \sim 0.1 E_{p}$ background light Vu Vμ > Reprocessing of $E_{\nu} \sim 0.05 E_{p}$ γ rays to GeV CMB 960 е Ve energies. COB 23 CIB 24 e 10¹ 10² 10 Wavelength λ [jim] **TeV-PeV** Neutrinos e **GeV** gamma rays

The cosmic-ray / gamma / neutrino connection

Extragalactic gamma-ray emission in the GeV barrier.

> New measurements indicate features in the spectrum.

12 DESY

> New measurements indicate features in the spectrum.

> New measurements indicate features in the spectrum.

Neutrino flavor ratio constraints.

Flavor ratios compatible with standard pion decay production (1:2:0) and muon damped scenarios (0:1:0)

> Beta decay origin (1:0:0) can be excluded at 3σ level.

But there are no sources !

> 7 years of IceCube data (construction phase + full array)

What does that imply?

Space Telescope Extragalactic gamma rays and neutrinos.

Blazars can still be subdominant populations

Limits do not exclude Blazars as a subdominant population that contribute e.g. the PeV events.

What does that imply?

Page

Indirect constraints on star-forming galaxies

Neutrinos from star-forming galaxies.

- > Gamma-ray emission associated with star-forming galaxies would fill up entire EGB
- > Contradicts findings that most of the EGB originates from Blazars.

A possible solution: gamma-ray opaque sources

Gamma-ray opaque sources: AGN cores

- > Accretion disks provide intense UV photon fields
- > Opaque for CR above ~ 100 PeV
- > Opaque for gamma rays above few GeV

Gamma-ray opaque sources: SNe, low-luminosity GRBs

Markus Ackermann | 23.09.2016 | Page 23

Ando & Beacom, PRI

Murase et al., PRD 84 (2011)

- > High-energy neutrinos from core-collapse SNe.
- > See Anna Franckowiak's talk for more details

Observed cosmic neutrino source unrelated to UHECR ?

- > Blazars or GRBs might produce UHECR, but the associated neutrino production is low.
- > Observed neutrino flux is unrelated to the UHECR ?

Other options: Neutrinos from the propagation of CR?

- > Talk by David Walz
- Observed neutrino spectrum does not fit to spectrum expected from UHECR propagation
 Markus Ackermann | 23.09.2016 | Page 25

In recent years we have seen the transition from 2-messenger astronomy to 3+1 messenger astronomy

> We get interesting new insights into the high-energy universe.

- > Extragalactic neutrino and gamma-ray skies seem to be very different.
- > Cosmic neutrinos are produced by high-density / low-luminosity source.
- > Neutrino sources and UHECR sources might be different populations.
- > Hint of a Galactic component (that might well be a statistical fluctuation)
- > Expect more exciting insights from current and next generation instruments

Multi-messenger astronomy in 10 years

> New instrumentation might allow a new level of multi-messenger astronomy

Backup

Best fit astrophysical neutrino spectrum using all channels

- > Combines starting event, shower, track and tau channels.
- > Does only contain **3 years of through-going track** data !
- Simple power law spectrum and power law + cutoff both compatible with IceCube data.
 Markus Ackermann [23.09.2016] Page 29

A new measurement...

> New analysis of 6 years of Northern hemisphere through-going muons

- > Harder spectrum with index ~ 2.1 above ~200 TeV
- > see talk by A. Franckowiak

Specific questions addressed by multi-messenger astronomy.

Cosmic ray composition above the knee.

shower maximum

- Extra component with cutoff at tens of PeV used in several fits of CR spectrum.
- > Could produce PeV Neutrinos.

Population 1: 4 PV Pop. 2: 30 PV Pop. 3 (mixed): 2 EV

 γ for Pop. 1

A Pevatron in the Galactic Center

- Diffuse emission around Galactic center source does not show a highenergy cutoff
- > Cutoff > 0.4 PeV in proton population at 95% CL

Analysis of the high-energy starting tracks

> One of the PeV neutrinos apparently comes from the Galactic center

... but angular resolution is ~ 15°, so don't get over-excited

> As shown: mild excess of events in a band around the galactic plane

- Still compatible with a statistical fluctuation.
- Distribution of events consistent with an isotropic origin
- > No conclusive answer at the moment.

