EBL dependence

EGMF dependence

Conclusions O

Influence of EBL and EGMF on the energy spectrum and mass composition of UHECR

David Wittkowski*, Karl-Heinz Kampert *david.wittkowski@uni-wuppertal.de

Astroteilchenphysik Bergische Universität Wuppertal

September 22, 2016

BERGISCHE UNIVERSITÄT WUPPERTAL

Großgeräte der physikalischen Grundlagenforschung

1/21

- 2 Influence of the EBL model
- 3 Influence of the EGMF model

- 2 Influence of the EBL model
- Influence of the EGMF model
- 4 Conclusions

Introduction ●○	EBL dependence	EGMF dependence	Conclusions O
Introduction			

Reconstruct UHECR source properties (spectral index γ , cut-off rigidity R_{cut} , element fraction f_i) by a fit of a simple astrophysical model to the Pierre Auger Observatory data (energy spectrum and chemical composition) assuming different EBL and EGMF models. Simple model:

- Source positions: Random, following Dolag LSS
- Minimal source distance: 10Mpc
- Source density: $\rho \approx 7 \cdot 10^{-5} \mathrm{Mpc^{-3}}$
- $\bullet\,$ Chemical composition at source: $^1H,\,^4He,\,^{14}N,\,^{56}Fe$
- Energy spectrum at source: Broken power-law with rigidity-dependent exponential cut-off:

$$\frac{dN}{dE} = J_0 \sum_i f_i \begin{cases} E^{-\gamma} & \text{for } E/Z_i < R_{\text{cut}}, \\ E^{-\gamma} \exp(1 - \frac{E}{Z_i R_{\text{cut}}}) & \text{for } E/Z_i \ge R_{\text{cut}} \end{cases}$$

Introduction ○●	EBL dependence	EGMF dependence	Conclusions O
Introduction			

- EBL models: Domínguez (2011) and Gilmore (2012)
- EGMF models: Dolag (weak) and Benchmark¹ (strong)
- 4D simulations with CRPropa 3
- Model X_{max} distribution based on Gumble distributions and EPOS LHC
- Evaluate likelihood for complete *X*_{max} distributions
- Markov Chain MC

¹R. A. Batista et al., J. Cosmol. Astropart. Phys. 2016, 025 (2016)

2 Influence of the EBL model

Influence of the EGMF model

4 Conclusions

Introduction	EBL dependence	EGMF dependence	Conclusions
00	●oooo		o
FBI · Domí	nguez (2011)		

3

Introduction 00	EBL dependence	EGMF dependence	Conclusions O
EBL: Gilm	ore (2012)		

Conclusions O

Best-fit parameters (Benchmark EGMF)

Source parameters	Domínguez (2011)	Gilmore (2012)
γ	0.6	1.2
$\log_{10}(R_{ m max}/{ m eV})$	18.4	18.7
Н	5.1 %	1.3 %
He	2.5 %	1.2 %
Ν	90.6 %	94.1 %
Fe	1.8 %	3.4 %
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	235.8/128

Conclusions O

Best-fit parameters (Benchmark EGMF)

Source parameters	Domínguez (2011)	Gilmore (2012)
γ	0.6	1.2
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.7
Н	5.1 %	1.3 %
He	2.5 %	1.2 %
Ν	90.6 %	94.1 %
Fe	1.8 %	3.4 %
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	235.8/128

Conclusions O

Best-fit parameters (Benchmark EGMF)

Source parameters	Domínguez (2011)	Gilmore (2012)
γ	0.6	1.2
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.7
Н	5.1 %	1.3 %
He	2.5 %	1.2 %
Ν	90.6 %	94.1 %
Fe	1.8 %	3.4 %
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	235.8/128

Conclusions O

Best-fit parameters (Benchmark EGMF)

Source parameters	Domínguez (2011)	Gilmore (2012)
γ	0.6	1.2
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.7
Н	5.1 %	1.3 %
He	2.5 %	1.2 %
Ν	90.6 %	94.1 %
Fe	1.8 %	3.4 %
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	235.8/128

Conclusions O

Best-fit parameters (Benchmark EGMF)

Source parameters	Domínguez (2011)	Gilmore (2012)
γ	0.6	1.2
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.7
Н	5.1 %	1.3 %
He	2.5 %	1.2 %
N	90.6 %	94.1 %
Fe	1.8 %	3.4 %
$D_{\rm T}/n_{\rm T}$	269.9/128	235.8/128

Conclusions O

Best-fit parameters (Benchmark EGMF)

Source parameters	Domínguez (2011)	Gilmore (2012)
γ	0.6	1.2
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.7
Н	5.1 %	1.3 %
He	2.5 %	1.2 %
N	90.6 %	94.1 %
Fe	1.8 %	3.4 %
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	235.8/128

Conclusions O

Best-fit parameters (Benchmark EGMF)

Source parameters	Domínguez (2011)	Gilmore (2012)
γ	0.6	1.2
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.7
Н	5.1 %	1.3 %
He	2.5 %	1.2 %
N	90.6 %	94.1 %
Fe	1.8 %	3.4 %
$D_{\rm T}/n_{\rm T}$	269.9/128	235.8/128

EBL dependence

EGMF dependence

Conclusions o

EBL: Domínguez (2011)

EBL dependence

EGMF dependence

EBL: Gilmore (2012)

2 Influence of the EBL model

4 Conclusions

Introduction	EBL dependence	EGMF dependence	Conclusions
00		●oooooo	o
Benchmark	FGMF		

Introduction	EBL dependence	EGMF dependence	Conclusions
oo		o●ooooo	O
Dolag EGMF			

Introduction 00	EBL dependence	EGMF dependence	Conclusions O
No EGMF			

EGMF dependence

Benchmark EGMF

EBL dependence

EGMF dependence

Conclusions o

Dolag EGMF

EBL dependence

EGMF dependence

Conclusions o

No EGMF

EGMF dependence

Conclusions O

Best-fit parameters (Domínguez EBL)

Source parameters	Benchmark EGMF	Dolag EGMF	No EGMF	
γ	0.6	0.4	-0.1	
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.5	18.8	
Н	5.1 %	4.0 %	1.0 %	
He	2.5 %	2.9 %	85.4 %	
Ν	90.6 %	89.4 %	13.5 %	
Fe	1.8 %	3.7 %	0.1 %	
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	291.5/128	298.5/128	

EGMF dependence

Conclusions O

Best-fit parameters (Domínguez EBL)

Source parameters	Benchmark EGMF	Dolag EGMF	No EGMF
γ	0.6	0.4	-0.1
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.5	18.8
Н	5.1 %	4.0 %	1.0 %
He	2.5 %	2.9 %	85.4 %
Ν	90.6 %	89.4 %	13.5 %
Fe	1.8 %	3.7 %	0.1 %
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	291.5/128	298.5/128

EGMF dependence

Conclusions O

Best-fit parameters (Domínguez EBL)

Source parameters	Benchmark EGMF	Dolag EGMF	No EGMF
γ	0.6	0.4	-0.1
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.5	18.8
Н	5.1 %	4.0 %	1.0 %
Не	2.5 %	2.9 %	85.4 %
Ν	90.6 %	89.4 %	13.5 %
Fe	1.8 %	3.7 %	0.1 %
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	291.5/128	298.5/128

EGMF dependence

Conclusions O

Best-fit parameters (Domínguez EBL)

Source parameters	Benchmark EGMF	Dolag EGMF	No EGMF
γ	0.6	0.4	-0.1
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.5	18.8
Н	5.1 %	4.0 %	1.0 %
He	2.5 %	2.9 %	85.4 %
Ν	90.6 %	89.4 %	13.5 %
Fe	1.8 %	3.7 %	0.1 %
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	291.5/128	298.5/128

EGMF dependence

Conclusions O

Best-fit parameters (Domínguez EBL)

Source parameters	Benchmark EGMF	Dolag EGMF	No EGMF
γ	0.6	0.4	-0.1
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.5	18.8
Н	5.1 %	4.0 %	1.0 %
He	2.5 %	2.9 %	85.4 %
N	90.6 %	89.4 %	13.5 %
Fe	1.8 %	3.7 %	0.1 %
$D_{\mathrm{T}}/n_{\mathrm{T}}$	269.9/128	291.5/128	298.5/128

EGMF dependence

Conclusions O

Best-fit parameters (Domínguez EBL)

Source parameters	Benchmark EGMF	Dolag EGMF	No EGMF
γ	0.6	0.4	-0.1
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.5	18.8
Н	5.1 %	4.0 %	1.0 %
He	2.5 %	2.9 %	85.4 %
N	90.6 %	89.4 %	13.5 %
Fe	1.8 %	3.7 %	0.1 %
$D_{\rm T}/n_{\rm T}$	269.9/128	291.5/128	298.5/128

EGMF dependence

Conclusions O

Best-fit parameters (Domínguez EBL)

Source parameters	Benchmark EGMF	Dolag EGMF	No EGMF
γ	0.6	0.4	-0.1
$\log_{10}(R_{\rm max}/{\rm eV})$	18.4	18.5	18.8
Н	5.1 %	4.0 %	1.0 %
He	2.5 %	2.9 %	85.4 %
N	90.6 %	89.4 %	13.5 %
Fe	1.8 %	3.7 %	0.1 %
$D_{\rm T}/n_{\rm T}$	269.9/128	291.5/128	298.5/128

- 2 Influence of the EBL model
- Influence of the EGMF model

Introduction	EBL dependence	EGMF dependence	Conclusions •
Conclusions			

- UHECR source properties (γ, R_{max}, f_i) were reconstructed by fitting a simple astrophysical model to the Pierre Auger Observatory data (energy spectrum and chem. composition)
- Intervalues of the best-fit parameters strongly depend on:
 - EBL model
 - EGMF model
- A nitrogen-rich source composition is favored, if an EGMF is taken into account
- The higher the interaction rates, the lower the injection cut-off *R*_{max} and spectral index γ

A Publication including more results in preparation!