

Impact of the galactic magnetic field on cosmic ray arrival

The nuclear window to the extragalactic universe \rightarrow arXiv:1607.01645 (submitted to ApJ)

Search for patterns by combining cosmic ray energy and arrival directions at the Pierre Auger Observatory \rightarrow Eur. Phys. J. C (2015) 75: 269

Marcus Wirtz, Martin Erdmann, Gero Müller, Martin Urban

RWTH Aachen – III. Physikalisches Institut A 22th Sep. 2016

Galactic magnetic field - parametrizations

X Models tuned to measurements (e.g. rotation measurements, synchrotron radiation)

How do they effect cosmic ray propagation?

Angular deflections

Moderate deflections for rigidities E/Z > 6 EV

Х

X Defocusing and focusing effects depending on energy and direction

X Size for R > 6 EV is mostly conserved !

Example arrival distributions

Reliability of magnetic field corrections

1801.01801.01501506 120 $_{\rm C}^{\rm O}$ N/N $_{\rm max}^{\rm O}({\rm R})$ 120 $_{\rm Gr}^{\rm O}$ N/N $_{\rm max}^{\rm O}({\rm R})$ $\mathbf{v} \ / \deg$ $\delta \ / \ {\rm deg}$ 90 90 60 60 30 30 0.0 0.0 0_{-1}^{-1} 100 100 10 10R / EVR / EV

PT11

JF12

X Above 6 EV the differences in the magnetic field deflections are acceptable

The nuclear window to the extragalactic universe

Search for patterns in CR arrival - mockup data

Analysis done by Tobias Winchen Eur. Phys. J. C (2015) 75: 269

Thrust major axis - Expectations

X Strength T2 of thrust major axis increases with coherent deflections

Observations

- X Cut E > 5 EeV ensures extragalactic origin
- ✗ ROIs (~14°) defined by high energy events E > 60 EeV → seeds 70 ROIs

Strength T₂ of major axis not significant / Also found axis are not stable

Limits on extragalactic scenarios (source density, turb defl. C_T)

Outlook

- 1) Choose of threshold and ROIs
- X Rigidity threshold at 6 EV instead of E > 5 EeV
- X Patterns typically arise strongest ~20° away from the source position

Conclusion

X Current galactic magnetic field parameterizations are adopted to numerous measurements (rotation measures, synchrotron radiation)

- X Reliable galactic field correction can be achieved above $E/Z \approx 6 \text{ EeV}$
 - \rightarrow deflections, dispersions, multiple images ...
 - \rightarrow models JF12 and PT11 as measure for our knowledge
- X Patterns caused by coherent deflections are expected
 - → no evidence in thrust auto correlation measurements
 - \rightarrow limits on extragalactic scenarios
 - → Outlook: compare to galactic field parametrization

SPONSORED BY THE

Federal Ministry of Education and Research HELMHOLTZ ASSOCIATION

Alliance for Astroparticle Physics

Backup

Figure 4.2: Successive calculation of the thrust observables $T_{1,2,3}$ and axes $\vec{n}_{1,2,3}$ in three steps (a–c). Dots mark arrival directions of UHECR with energy denoted by the color.

Limits on extragalactic scenarios

Source Density [Mpc⁻³]

Coherent delfection parameter

 $C_{C} = 0.5 \text{ rad EeV}$ $C_{C} = 1.0 \text{ rad EeV}$

Turbulent delfection parameter

$$\delta_{\rm RMS} \simeq \frac{C_{\rm T}}{E}.$$
 (7)

A value of $C_{\rm T} = 1$ rad EeV is equivalent to an RMS of the deflection angle $\delta_{\rm RMS} = 5.7^{\circ}$ for 10 EeV particles. For example, using the usual parametrization for deflections in turbulent magnetic fields [26, 27] this corresponds to the expected deflection of 10 EeV protons from a source at a distance $D \approx 16$ Mpc propagating through a turbulent magnetic field with coherence length $\Lambda \approx 1$ Mpc and strength $B \approx 4$ nG.

Two realizations of random fields - striated and turbulent (JF12)

Field transparency

Blind regions

- X Blind spot for antimatter in JF12 field even at high energies
- **X** For energies below $E \approx 10 \text{ EeV}$: blind regions also for matter

Gyro-radius

High energy gyro-radius: $R_{gyro} \approx \frac{1.1}{Z} \cdot \frac{E[EeV]}{B[\mu G]}$ Example: 6 EeV proton and $B = 2 \ \mu G$: $R_{gyro} \approx 3 \ \text{kpc}$

р