

The H.E.S.S. prompt alert and follow-up system

<u>Clemens Hoischen (Potsdam University)</u>, Arnim Balzer (UvA), Matthias Füßling (DESY), Stefan Ohm (DESY)

on behalf of the H.E.S.S. Collaboration

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

HAP Workshop Topic 2: The Non-Thermal Universe Session 4: Multi-messenger Astroparticle Physics 22.09.2016 Erlangen

Transient Astrophysical Phenomena in a Nutshell

H.E.S.S.

Why do we need a ToO System

Transient Astrophysical Phenomena in a Nutshell

Why do we need a ToO System

Time scale of Phenomena (log)

GEFÖRDERT VOM

für Bildung und Forschung

Bundesministerium

Clemens Hoischen . H.E.S.S. follow-up System . 22.9.16

Transient Astrophysical Phenomena in a Nutshell

Why do we need a ToO System

Time scale of Phenomena (log)

Bundesministerium für Bildung und Forschung

Transient Astrophysical Phenomena in a Nutshell

Why do we need a ToO System

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Reality is a bit more complicated. *GRBs* have many different time scales

Why do we need a ToO System

Phenomena can be subdivided in many different classes. Sub classes can even result from completely different progenitor systems

Many messengers are available

Why do we need a ToO System

From H.E.S.S. Neutrino follow-up (Schüssler et. al. Gamma16)

Problems

Unclear what the sources of the neutrinos are

If they are time dependent this approach is useless

→ Alert systems and rapid follow-up

Previous neutrino follow-up approach

Pick locations of Neutrino candidates Check archival data or take new observations

Right Ascension (J2000)

\rightarrow Upper Limits

E. Resconi, S. Coenders, P. Padovani, P. Giommi, L.Caccianiga: "30% of IceCube Flux can be explained by BL Lacs"

(Three Messenger Conference 2016 & submitted)

→ BL Lac are variable!

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

- ① Triggered by any type of astrophysical messenger
- ② Clear criteria for each channel
 → Science cases
- ③ Fast repointing of Telescopes
- ④ Robust system that deals with corner cases
- (5) Fast feedback of the observations
 → continue observing?
- 6 Inform community about our results

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Requirements for a successful ToO System

- ① Triggered by any type of astrophysical messenger
- ② Clear criteria for each channel
 → Science cases
- ③ Fast repointing of Telescopes
- ④ Robust system that deals with corner cases
- (5) Fast feedback of the observations
 → continue observing?
- 6 Inform community about our results

Bundesministerium für Bildung und Forschung

- ① Triggered by any type of astrophysical messenger
- ② Clear criteria for each channel
 → Science cases
- ③ Fast repointing of Telescopes
- ④ Robust system that deals with corner cases
- (5) Fast feedback of the observations
 → continue observing?
- 6 Inform community about our results

H.E.S.S.

Bundesministerium für Bildung und Forschung

Where can we save time?

- DAQ software overhead →Negligible
- Drive system

Who provides triggers?

- How much delay do they have?
- What are their uncertainties?

How do others provide their triggers?

 Can we incorporate their triggers into our system

How do we report our findings?

Bundesministerium für Bildung und Forschung

- CT1-4: Time needed to be on target for 90% of possible target locations: ~3 minutes.
- → CT5 drive system designed with fast repointing in mind

H.E.S.S. CT5 drive system

Configuration	Mean time [s]	90% on target [s]
$EL < 90^{\circ}$	61	107
$EL < 175^{\circ}$	36	52

From Hofverberg, P., et al. "Commissioning and initial performance of the HESS II drive system. *arXiv:1307.4550* (2013).

Clemens Hoischen . H.E.S.S. follow-up System . 22.9.16 13

Several python packages available for simple usage:

- voevent-parse
- voeventdb
- comet

GEFÖRDERT VOM

緣

Bundesministerium für Bildung und Forschung

H.E.S.S. VO Alerter Setup

Clemens Hoischen . H.E.S.S. follow-up System . 22.9.16 16

H.E.S.S.

Clemens Hoischen . H.E.S.S. follow-up System . 22.9.16 17

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

H.E.S.S. VO Alerter Setup

19

H.E.S.S. VO Alerter Setup

20

H.E.S.S. VO Alerter Setup

21

30% of dark time is reserved for target of opportunity observations

Science cases	Messenger	Automated follow-up
AGN Flares	GeV γ-rays, Optical, X-rays	×
GRBs	X-rays, GeV γ-rays	✓
Neutrinos	V	✓
SGR/AXP	X-rays	 ✓
FRBs	radio	(🖌) planned
GWs	GWs	 ✓
HMXBs	X-rays	×
Flaring stars	X-rays	×
Near CC SNe	optical	×

Interesting extension

AMON: correlate different messengers with lower alert threshold

Common alert types

Prompt: Position is visible at the moment the alert is received Afterglow: Position will become visible later

Clemens Hoischen . H.E.S.S. follow-up System . 22.9.16

Summary

Automated systems are the only viable way to perform follow-up observations with spatial + temporal correlation to the astrophysical event.

Sensitivity of pointed observations is desperately needed to learn about the physics of short-lived transients

Expect results from rapid followup observations of transients from H.E.S.S. soon!

Bundesministerium für Bildung und Forschung