

Impact of Lorentz violation in the photon sector on extensive air showers

J. S. Diaz¹, F. R. Klinkhamer¹, •M. Niechciol², M. Risse²

¹Institut für Theoretische Physik, Karlsruher Institut für Technologie (KIT) ²Department Physik, Universität Siegen

HAP Workshop Topic 2 | The Non-Thermal Universe (Erlangen) 22.09.2016

Bundesministerium für Bildung und Forschung

Allianz für Astroteilchenphysik

Why Lorentz violation?

- The Standard Model of Elementary Particle Physics (SM) has been extremely successful...
 - Predictions have been tested to very high precision
 - Discovery of the Higgs boson at the LHC in 2012
- ...but we know it's **not complete**
 - Dark matter and dark energy?
 - Gravity?
 - Observed matter/antimatter asymmetry in the Universe?
- We want a **fundamental theory** that combines all forces
- In current approaches (e.g. string theory), Lorentz violation (LV) may well be possible
 - Small LV effects may be accessible already at lower energies

Standard Model Extension (SME)

- SME is an extension of the SM that allows for minuscule violations of Lorentz symmetry [Colladay & Kostelecký 1997] [Colladay & Kostelecký 1998]
 - **General framework** to systematically study LV in any sector of the SM
 - SME provides a handle for experimentalists to perform generic searches for LV
- Now focus on LV in the photon sector:

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} + \overline{\psi} \left[\gamma^{\mu} (i\partial_{\mu} - eA_{\mu}) - m \right] \psi - \frac{1}{4} (k_F)_{\mu\nu\rho\sigma} F^{\mu\nu} F^{\rho\sigma}$$

- First two terms in the Lagrangian correspond to conventional QED
- Last term introduces a dimension-four operator that breaks Lorentz symmetry while preserving CPT and gauge invariance [Chadha & Nielsen 1983] [Kostelecký & Mewes 2002]
 - Degree of LV is controlled by the **dimensionless coefficient** $(k_F)_{\mu\nu\rho\sigma}$

The coefficient $(k_F)_{\mu\nu\rho\sigma}$

Carroll, Field, & Jackiw 1990]

- $(k_F)_{\mu\nu\rho\sigma}$ has **19 independent components**
 - 10 components produce birefrigence in the photon sector: [Carroll & Field 1997] [Kostelecký & Mewes 2001]
 can be constrained to high precision using cosmological observations
 - 8 components lead to direction-dependent modifications of the photon-propagation properties: not discussed here
 - Remaining component leads to isotropic modifications of the photonpropagation properties
- Isotropic, nonbirefringent LV in the photon sector is therefore controlled by a single dimensionless parameter κ , which enters the coefficient $(k_F)_{\mu\nu\rho\sigma}$ in the following way:

$$(k_F)^{\lambda}_{\mu\lambda\nu} = \frac{\kappa}{2} \begin{pmatrix} 3 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Isotropic, nonbirefringent LV

- UNIVERSITÄT SIEGEN
- κ endows the vacuum with an effective index of refraction, leading to a modification of the photon dispersion relation

$$\omega(q) = \frac{1}{n_{\text{eff}}} q = \sqrt{\frac{1-\kappa}{1+\kappa}} q$$

- This modification allows for processes which are kinematically forbidden in the conventional Lorentz-invariant theory
 - $\kappa > 0$: vacuum Cherenkov radiation possible above a threshold $E_{thr}(\kappa)$

$$f \to f + \tilde{\gamma}$$

efficient energy loss mechanism for charged particles, current constraints ($\kappa < 6 \times 10^{-20}$ at 98% C.L.) derived from observations of UHECRs [Klinkhamer & Risse 2008] [Klinkhamer & Schreck 2008]

• $\kappa < 0$: photon becomes unstable above a threshold $\omega_{thr}(\kappa)$

$$\tilde{\gamma} \to e^+ + e^-$$

decay length is very small, current constraints ($K > -9 \times 10^{-16}$ at 98% C.L.) derived from gamma-ray astronomy [Klinkhamer & Schreck 2008]

LV and extensive air showers

- Constraint on κ < 0 has been derived from the observation of photons with energies around 10¹³-10¹⁴ eV
 - Tighter constraints require higher-energy photons: prospect of observing such photons in primary cosmic rays?
- Alternative approach: exploit extensive air showers initiated by (hadronic) primaries in the Earth's atmosphere [Díaz, Klinkhamer & Risse 2016]
 - General idea: it is expected that a shower initiated by a UHE (> 10¹⁸ eV) primary contains at least a couple of very-high-energy photons as secondary particles (mainly expected in the startup phase)
 - A modification of these very-high-energy photons due to LV would lead to a different shower development as compared to conventional physics
 - First question: what could be the magnitude of this difference?
 → Use a modified Heitler model to describe electromagnetic cascades
 under the assumption of LV

Conventional Heitler model

- Heitler model describes particle multiplication in an electromagnetic shower as a binary tree [Heitler 1949]
 - Each photon produces two charged leptons via pair production; each charged lepton produces a charged lepton and a photon via bremsstrahlung
 - Simplifying assumption: each interaction occurs after exactly one splitting length $d = \ln(2) X_0$, with the radiation length X_0 (in air 37 g/cm²)
 - The energy of the primary particle is shared equally between all secondary particles
 - The cascade continues until the energy per particle reaches the critical energy E_c (in air 80 MeV)
 - Maximum number of particles for a shower initiated by a photon of energy ω_0 is reached at the depth

$$X_{\max} = X_0 \ln \left(\frac{\omega_0}{E_c}\right)$$

Modified Heitler model: photon decay

- LV only affects photons in the electromagnetic cascade
 - Decay of photons above the threshold

$$\omega_{\rm thr} = 2 \, m_e \, \sqrt{\frac{1-\kappa}{-2 \, \kappa}}$$

For $\kappa = -9 \times 10^{-16}$ (-9 × 10⁻²⁰): $\omega_{\text{thr}} = 2.4 \times 10^{13}$ eV (2.4 × 10¹⁵ eV)

• Decay rate for the process $\tilde{\gamma} \rightarrow e^+ + e^-$ is given by

$$\Gamma_{PhD}(\omega) = \frac{\alpha}{3} \frac{-\kappa}{1-\kappa^2} \sqrt{\omega^2 - \omega_{\rm thr}^2} \left(2 + \omega_{\rm thr}^2/\omega^2\right) \text{ [Diaz & Klinkhamer 2015]}$$

Modified Heitler model: cascade

UNIVERSITÄT SIEGEN

Modified cascade initiated by a photon above threshold

- Instant decay of the initial photon into two leptons
- Each lepton produces an additional photon (above threshold) via Bremsstrahlung $e^{\pm} \rightarrow e^{\pm} + \tilde{\gamma} \Rightarrow e^{\pm} + e^{-} + e^{+}$
- Simplifying assumption: At each interaction step, three leptons are produced which share the initial energy equally
- If the energy per particle falls below the threshold, the cascade continues according to the conventional Heitler model

Modified Heitler model: X_{max}

Due to the different shower development, the X_{max} of the electromagnetic cascade changes:

• Note: also the elongation rate changes due to the factor η

UNIVERSITÄT

Comparison to conventional physics

• Express the modified X_{max} in terms of the conventional X_{max} :

UNIVERSITÄT

Constraining κ with X_{max} measurements

• Assuming a relative deviation δ in X_{max} at an energy ω_0 w.r.t. conventional physics is measured: what can be said about κ ?

UNIVERSITÄT SIEGEN

- Air shower measurements can provide a handle on Lorentz violation (LV) in the photon sector
 - LV leads to a modification of the atmospheric depth of the shower maximum X_{max} w.r.t. conventional physics
- Analytical calculations of the impact of LV on electromagnetic cascades have been performed using a modified Heitler model
- Potential to improve existing limits on the isotropic, nonbirefringent LV parameter κ by several orders of magnitude (e.g. up to -10⁻²¹ assuming a 10 % difference in X_{max} at 10¹⁹ eV)

• Outlook:

- Implement LV in air shower simulations to get a more realistic description of the shower development
- Extend the study to hadron-induced air showers