

SiPMs in Ground-based High Energy **Astroparticle Physics** from my perspective

Thomas Bretz (RWTH Aachen)

Mass Product → high precision → low cost product

What is a SiPM?

Silicon based photo sensors

Example: Hamamatsu 1mm²

What is a G-APD?

Silicon based photo sensors

Geiger-mode avalanche photo diode

Example: Hamamatsu 1mm²

What is a G-APD?

Silicon based photo sensors

Geiger-mode avalanche photo diode

Transistor in 2015: ~20nm(!)

Photon counting

High precision \rightarrow every avalanche (cell) releases similar charge

FACT First G-APD Cherenkov Telescope

~ 2008

Dedicated monitoring telescope with the possibility to observe during strong moon light

1440 channels à 0.11°

Construction 2009 – 2011

HAPPY BIRTHDAY

FACT – Selected events of the first nights of data-taking (11 Oct. 2011)

Operation during moon light

~5 Years of Monitoring

Monitoring @ TeV Energies

HAWC site, Mexico

NG SOON

ON

Two HEGRA mounts in Mexico

Spectral response

Properties

- Small effective area (≤ 36mm²)
 Max. 3x3mm² → 6x6mm² TSV techn. (borderless, tillable)
- Very good **time resolution** O(50ps) due to low time jitter

Reach **dynamic range** comparable to PMTs ($\sim 5 \cdot N_{cells}$) \rightarrow e.g. > 200,000 pe (6x6mm², 25µm), but not linear

Price
 20 €/mm² → 0.5 €/mm² (20€ - 30€ / sensor)

Temperature dependence

• O(few % / K)

Thomas Bretz (RWTH Aachen University), HAP Workshop | The non-thermal Universe, Erlangen 2016

Feedback system

simplified sketch

Integrated circuits

IN: OUT: USB for Communication and power Temp. compensated SiPM voltage

 \rightarrow More example applications

Fluorescence telescopes

prototype \rightarrow goal: installation at Auger site

Thomas Bretz (RWTH Aachen University), HAP Workshop | The non-thermal Universe, Erlangen 2016

Pampa Amarilla, Argentina

Pampa Amarilla, Argentina

\rightarrow Replace PMT with SiPM

Charge spectrum (calibrated)

Technology outlook

- No significant further improvement expected in the near future (but some are still in the queue)
- Dedicated integrated (low cost) circuits (power supply, daq)
- SiPM integrated data acquisition (*digital SiPM*)

Peter Fischer, Heidelberg University

Conclusion

- SiPM will play a major role in Astroparticle physics
- Interesting new technology in the queue

5600

