Acoustic particle detection

Robert Lahmann HAP Workshop: The Non-Thermal Universe Erlangen, 21-Sept-2016

Outline

- Introduction: acoustic neutrino detection
- The "first generation" of acoustic neutrino test setups
- Lessons learned and future activities
- Conclusions

Neutrino signatures in different media

adapted from: R. Nahnhauer, ARENA Conf. 2010

Advatages of acoustic detection:

- long attenuation length
- simple, robust technology
- multi purpose applications

Acoustic signals of neutrino interactions

The bipolar pulse

Attenuation length

water

Acoustic detection test setups

"First generation" acoustic test setups for feasibility studies (background), developing techniques/algorithms

Two approaches:

- Use of existing (military) arrays
- piggybacking on neutrino telescope infrastructure

Technology: Hydrophones (in water) and glaciophones (in ice) using piezo ceramics

Array size: O(10) sensors

Test setups in ice and water

HAP Meeting Erlangen - 21-Sept-2016 - Robert Lahmann

Limits on UHE neutrino flux

OnDE ambient noise (ARENA 2008)

Main source: Surface agitation and precipitation

AMADEUS transient background investigations

- Sources: Very diverse;
 Shipping traffic, marine mammals, …
 ⇒ Mostly originating from near surface
- Suppression:
 - signal classification
 - Project reconstructed signals to surface, perform clustering

Lessons learned and future experiments

Mediterranean (→ KM3NeT):

- Ambient noise low and stable; reduction of SNR for signal detection crucial
- Transient background: High level of (mainly dolphins); Recognition of "acoustic pancake" crucial

Lake Baikal (→ GVD):

 Good background conditions, easy deployment, but low signal amplitude due to low temperature in lake

Ice (\rightarrow IceCube-Gen2 ?):

• Attenuation length shorter than expected, but no show stopper; combination optical/radio/acoustic provides unique potential

⁽from: N.Budnev, ARENA2016)

KM3NeT design

30mm

Potential fiber hydrophone system for KM3NeT

Acoustic Sensors for IceCube-Gen2

- IceCube-Gen2 is a planned extension of IceCube Neutrino Observatory
- Increased detector volume (~ 10 km³) in the Antarctic ice •
 - Increased spacing between detector modules (~ 240 m 300 m)
 - Optical geometry calibration (accuracy < 1m) is expected to deteriorate \rightarrow
- Use acoustic signals, due to larger extinction length (\sim 300m [SPATS]) for geometry calibration
- Develop acoustic positioning concept for IceCube-Gen2
- Use sensors for acoustic neutrino detection

Up to now: (master's thesis S. Wickmann)

- Modified existing acoustic sensor from the EnEx project •
 - Two channels: Channel 1 for positioning, channel 2 for neutrino detection
 - Substantially reduced power consumption
- Integrated modified sensor into an IceCube DOM
- Tested the acoustic positioning concept in water

16

Conclusions

- "First generation" acoustic arrays have been used to investigate neutrino detection methods and provide input for simulations
- Extension of investigations possible with KM3NeT, GVD and IceCube-Gen2

Bundesministerium für Bildung und Forschung

Thank you for your attention!

Bundesministerium für Bildung und Forschung

Acoustic signals of neutrino interactions in water I

Thermo-acoustic effect: (Askariyan 1979) energy deposition ⇒ local heating (~µK) ⇒ expansion ⇒ pressure signal

Wave equation for the pressure p for deposition of an energy density ε :

$$\nabla^2 p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = -\frac{\alpha}{C_p} \frac{\partial^2 \varepsilon}{\partial t^2}$$

- α = Volume expansion coefficient
- C_{p} = specific heat capacity (at constant pressure)
- c = speed of sound in water (ca. 1500 m/s)

Solution (analytical/numerical) with assumption of an instantaneous energy deposition

Sound absorption length in water

Acoustic signals of neutrino interactions in water I

Thermo-acoustic effect: (Askariyan 1979) energy deposition ⇒ local heating (~µK) ⇒ expansion ⇒ pressure signal

Wave equation for the pressure p for deposition of an energy density ε :

$$\nabla^2 p - \frac{1}{c^2} \frac{\partial^2 p}{\partial t^2} = -\frac{\alpha}{C_p} \frac{\partial^2 \varepsilon}{\partial t^2}$$

- α = Volume expansion coefficient
- C_{P} = specific heat capacity (at constant pressure)
- c = speed of sound in water (ca. 1500 m/s)

Solution (analytical/numerical) with assumption of an instantaneous energy deposition

Acoustic signals of neutrino interactions in water II

HAP Meeting Erlangen - 21-Sept-2016 - Robert Lahmann

Temperature profile

Speed of sound vs. depth

Grüneisen parameter

AMADEUS ambient noise

 $<\sigma_{noise}>$ is about 10 mPa (10-50 kHz) and 95% of the time below $2<\sigma_{noise}>$

Cluster analysis of moving sound emitting objects

HAP Meeting Erlangen - 21-Sept-2016 - Robert Lahmann

Spatial distribution of transient background

SAUND and AUTEC

HAP Meeting Erlangen - 21-Sept-2016 - Robert Lahmann

Test Site at 2000 m depth, 25 km offshore Catania 39.5 Operation of test setup OnDE (4 hydrophones) from 2005 - 2006 39 38.5 **Cable from shore** Latitude 38 Catania 37.5 **H2 H1** Site 37 Housing hydrophones electronics **H3** 36.5 housing 36 35.5 └ 15 H4 connectors Height from seabed : H1, H2, H4: ~ 2.6 m H3: ~ 3.2 m KM3Net-Italia activities covered by F. Simeone HAP Meeting Erl

OnDE and KM3NeT-Italia

The Rona Array (ACoRNE Collaboration)

Off the Isle of Skye, 8 sensors

total cable length = 2m + cable extension + cable to shore

SPATS – IceCube

- Ice as detector medium
- 4 strings with 7 "stages" each
- A stage consists of a transmitter module and a receiver module (attenuation length measurements)
- Taking data since 2006, currently no further developments planned

Acoustic Sensors for IceCube-Gen2

- Evaluation of the acoustic positioning concept in a swimming pool
 - 6 acoustic emitters
 - 1 Acoustic DOM (IceCube DOM with 3 acoustic sensors)
 - Acoustic positioning via trilateration
 - Compare reconstructed positions with reference
- Reconstructed positions are in good agreement with the reference positions (even without further corrections)
- Systematic errors are not yet fully understood
- Heading of the Acoustic DOM can be estimated
- Accuracy better than 7cm (x-y-plane) on average

Next steps:

36

- Integrate acoustic sensors into Icecube-Gen2 DOM
- Develop concept for acoustic emitters for IceCube-Gen2
- S. Wickmann, master's thesis, RWTH Aachen University 2016
- S. Wickmann et al., EPJ Web of Conferences, ARENA 2016 (in review)

