New optical sensors for IceCube-Gen2

Dr. Peter Peiffer HAP non-thermal workshop Erlangen, September 21st 2016

IceCube Generation 2

Next-generation neutrino telescope at the South Pole

- Physics goals:
 - neutrino astronomy (high-energy detector)
 - neutrino oscillation physics (PINGU)
- Instrumentation
 - ~10,000 optical sensors on O(140) strings
 - 5-10 km³ instrumented volume
- Limitations
 - Extreme ambient conditions (e.g. 550 bar pressure)
 - Technical limitations (e.g. weight and power per cable)
 - Cost (e.g. drilling cost and speed)

Different sensor-concepts for Gen2

In sequence of boldness •

Baseline: Gen2 DOM

Plan: add inclination sensor to monitor orientation of DOM

Dual optical sensors in an **E**llipsoid **G**lass for **G**en2

P. Peiffer: Optical sensors for IceCube

6

D-Egg concept

- 2 x 8-inch PMTs (Hamamatsu R5912-100 HQE)
- custom made elliptical pressure vessel

(Ø 12 inch = 300 mm, length 535 mm)

- refined borosilicate glass (Fe₂O₃ depleted)
- stability tested at 700 bar

Advantages:

- increased sensitive area
- 4π angular sensitivity
- increased UV sensitivity
- muon veto
- smaller diameter saves drilling cost
- will be equipped with a calibration device to study ice properties

D-Egg angular acceptance

Ice-Cube DOM

D-Egg

PMT quantum efficiency included

P. Peiffer: Optical sensors for IceCube

8 JG L

UV-sensitive glass, gel and PMT

P. Peiffer: Optical sensors for IceCube

D-Egg event simulation

P. Peiffer: Optical sensors for IceCube

lceCube

multi-PMT Optical Module

mDOM basics

- Based on KM3NeT design
- Pressure vessel diameter: 14 inch
- 24x 3 inch PMTs
- Signal digitization for each PMT

Features

- More than doubled effective area compared to IceCube-DOM
- Uniform 4π angular effective area
- Directional sensitivity
- Local coincidences (e.g. for background suppression)
- Improved photon counting

Challenge: electronics and space

- HV generation on base (Cockcroft Walton design, © Nikhef)
 - low power (3–5 mW)
 - adapted to optimized board shape
- Front-end electronics for signal processing on backside

New optimized board shape with HV circuitry

lceCube

Alternative readout method to save bandwidth, power and space:

- Time over threshold (ToT)
- Use known spe-pulse shape to extract pulse
- Baseline design: 4 comparators in discrete design
- More ambitious goal: 63 comparators in ASIC design

WOM

Wavelength-shifting Optical Module

WOM basics

- Quartz glass cylinder (Ø11 cm, L=113 cm)
- Wavelength-shifting tube inside
- Light collection via total internal reflection
- 2 small PMTs (e.g. KM3NeT)

Advantages:

- UV sensitivity
- Large effective area
- Low noise
- Cost effective

Status

- Dip-coater running reliably
- Pressure vessel tested

Mounting

Adiabatic light guide

...mounted on tube with UV curing glue

Measurements

Efficiency

- Factor ~3 higher effective area than DOM (integrated over $\lambda = 250-700$ nm including Cherenkov weighting.)
- Improved angular acceptance (though not at mDOM level)
- But timing resolution ~10 ns

Full detector simulation ongoing

Performance

l c e C u b e

Summary

- Several promising optical modules are in development
- Focusing on different advantages over the baseline DOM
 - Spectral sensitivity
 - Angular acceptance
 - Noise reduction
 - Cost per module
 - Drilling speed and cost
- Final module will have to find an optimum between performance and cost (and thereby number of modules)
- Will probably include properties and R&D from several modules (e.g. wavelength-shifter option)
- Possibly different modules for different purposes

20

Thank you for listening

University of Alberta-Edmonton University of Toronto

USA Clark Atlanta University Drexel University Georgia Institute of Technology Lawrence Berkeley National Laboratory Massachusetts Institute of Technology Michigan State University **Ohio State University** Pennsylvania State University South Dakota School of Mines & Technology Southern University and A&M College **Stony Brook University** University of Alabama University of Alaska Anchorage University of California, Berkeley University of California, Irvine University of Delaware University of Kansas University of Maryland University of Wisconsin-Madison University of Wisconsin-River Falls Yale University

Denmark

Chiba University, Japan

Belgium

Sungkyunkwan University, Korea

University of Oxford, UK

Université Libre de Bruxelles Université de Mons Universiteit Gent Vrije Universiteit Brussel

Uppsala universitet

Germany

Deutsches Elektronen-Synchrotron Friedrich-Alexander-Universität **Erlangen-Nürnberg** Humboldt-Universität zu Berlin **Ruhr-Universität Bochum RWTH Aachen** Technische Universität München **Technische Universität Dortmund** Universität Mainz Universität Wuppertal

Université de Genève, Switzerland

University of Adelaide, Australia

University of Canterbury, New Zealand

Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS) Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen) Federal Ministry of Education & Research (BMBF) German Research Foundation (DFG)

Deutsches Elektronen-Synchrotron (DESY) Japan Society for the Promotion of Science (JSPS) Knut and Alice Wallenberg Foundation Swedish Polar Research Secretariat The Swedish Research Council (VR)

University of Wisconsin Alumni Research Foundation (WARF) **US National Science Foundation (NSF)**

Backup slides

Ice Cube ambient conditions

~ 13″ - 15″

during refr

23

P. Peiffer: Optical sensors for IceCube

Technical limitations

- Power & communication via copper cables
- Power budget limited by voltage drop (2500 m cable)
- 4 DOM per breakout:
 < 2.3 W each
- 3 DOM per breakout
 < 3.2 W each
- Bandwidth per OM ~ 1Mbit/s
- Weight limit ~20 kg/module

Reflectors and angular acceptance

PMT holding structure

PMT with reflector

Reflectors significantly increase directionality of PMT

Pressure vessel

- Cherenkov photon spectrum ~ $1/\lambda^2$
 - \rightarrow transparency in UV range important
- Significant differences though same material (borosilicate glass)
- But also radioactive contamination important → optical background ·

prototype of pressure vessel

26

Milestones

Dip coater for WLS tubes

Coated tube under UV irradiation

Prototype pressure vessel assembled

- vacuum tested at DESY Zeuthen
- stable since
 ~9 months
- pressure test up to 320 bar in Madison

L-OM or Brussels sprouts OM

- 'Long Optical Module'
- Hybrid between WOM and mDOM
- Inherits benefits (and R&D) of both
 - Increased angular acceptance
 - Decreased drilling cost
- Idea: fit as many PMTs as possible into a small diameter (drilling cost)
- Don't exceed weight limit

• WLS options under investigation (could also be applied to other OM)

WLS-fiber module

Milestone: successful freeze-test of fibers in -50°C ice.

