

Large-area photosensors for neutrino detection using wavelength shifters

Sebastian Böser

HAP Workshop: Advanced Technologies KIT January 24th 2013

Towards a low-energy v detector

IceCube (build)

- 80 strings, 125m / 16m spacing
- Ethresh ~ 100 GeV
 - → astrophysical CR-sources

DeepCore (build)

- +6 strings, 72m / 7m spacing
- E_{thresh} ~ 10 GeV
 →WIMPs, neutrino oscillations,...

PINGU (proposal stage)

- +20 string, 25m / 4m spacing
- Ethresh ~ 1GeV
 - →v mass hierarchy, WIMPs,...

MICA (envisioned)

- +100 strings, 15-25m / 0.5m spacing
- E_{thresh} ~ few MeV
 - → Supernova v, proton decay,...

Motivation

Sensor requirements

- largest photosensitive area
- low noise rate
 - \rightarrow energy threshold and resolution
- robust
 - →high pressures Ø(kbar)
 - →low temperatures

IceCube optical module

- bialkali photo-cathode
- pressure housing
- digital readout & comms
- A_{eff} ~ 20cm²
- f_{noise} ~ 500Hz @ -30°C
 - →cost ~5k\$ / module
 - → size constraint by hole diameter

Multi-PMT concept

KM3Net

- 17" pressure sphere
- 31x 3" PMT
 - → ~3x larger A_{eff}
 - → directional sensitivity

South Pole adaption

• cylindrical pressure housing

But...

- High noise rate
 - → ~ 1 kHz total
- High power density
 - → Ø(100W) vs. 4W
- Cost

(scales with photocathode area)

 Complexity (readout channels) universität bonn

Wavelength shifting optical module (WOM)

Basic concept

- Wavelength shifters (WLS)
 - → concentrate light

WLS bars

- large sensitive area
- inexpensive
- low noise rate (< 1Hz/kg)

Basic concept

- Wavelength shifters (WLS)
 - → concentrate light

WLS bars

- large sensitive area
- inexpensive
- low noise rate (< 1Hz/kg)

Readout

- small PMT(s)
 - →low noise (~ few Hz)

Pressure vessel

- fused silica (quartz)
 - →UV transparent
 - →low noise (<0.1 Hz/kg)

Tested WLS materials

Ingredients

- active material (wavelength shift)
- carrier (waveguide)

Active Material

- BC-482A
 - →blue to green
- BC-480
 - →UV to blue

Carrier

polyvinyltuolene (PVT)
 → not UV transparent

Manufacturer

• Saint-Gobain

universitätbo

Determining WOM efficiency

Total efficiency

 $\varepsilon_{tot} = \varepsilon_{glass}(\theta) \cdot \varepsilon_{WLS}(\lambda) \cdot \varepsilon_{PMT}(\lambda)$

- ε_{glass}: glass-air transition
 → calculate (Fresnel)
- ε_{WLS}: capture efficiency
 →lab measurement
- ϵ_{PMT} : quantum efficiency
 - → from manufacturer

Lab setup

- reference photo diode
 - →identical to signal diode
 - relative calibration
- wavelength scan
 - → 5-10 min per sample

Results I: Emission spectra

BC-482A

• blue to green

BC-480

• UV to blue

Results I: Emission spectra

BC-482A

- blue to green
- peak at 490nm
 →good match

- UV to blue
- peak at 430nm
 - →good match

Results II: Capture efficiency

Capture efficiency

- $\epsilon_{WLS} = N_{\gamma}(out) / N_{\gamma}(in)$
- includes
 - →absorption
 - →quantum efficiency
 - →waveguide losses

BC-482A

- Measured: ε_{WLS} ≈ 20%
- Toy-MC: ε_{WLS} ≈ 37%
- mirror increases ε_{WLS}
 - →optical thickness low
 (λ_{abs} = 3.9±0.3mm)

BC-480

- Measured: $\epsilon_{WLS}(peak) \approx 7.8\%$
 - → absorption in carrier ?

Result III: combined capture efficiency

Sandwich technology

- each WLS acts as individual waveguide
- mirror foil
 - →increases optical thickness

Combined efficiency

- sensitivity range
 → 300nm 480nm
- overall efficiency
 - →ε(430nm) reduced due to absorption in BC-480
 - →ε(350nm) increased due to double converted photons

Glass vessel

Fused silica quartz glass

- UV (= Cherenkov) transparent
- very low radioactivity

Cylindrical design

- tube with hemispherical endcaps
- commercially available
 - →www.technicalglass.com

Angular efficiency

Transmission into WLS

- ice-glass-air transition
 - ice: n = 1.33
 - glass: n = 1.48
 - air: n = 1.0
 - → strong directional dependance
- average over all impact parameters
 - →peak transmission

 $\epsilon_{glass}(\theta_{peak}) = 70\%$

Readout PMTs

Requirements

- high green sensitivity
- low noise

Photocathodes (Hamamatsu)

- Ultra-bialkali (R7600-UBA)
 → off-the-shelf
- 'enhanced green' (R7600-EG)
 - → off-the-shelf
- GaAsP (R9792U MHP119)
 - → prototype for Magic-II (limited cathode size)

Overall quantum efficiency

IceCube DOM

• as built

WOM parameters

- radius = 10cm
- length = 2m
- PMT(2") = 25cm²

Effective Area

- Cherenkov spectrum weighted
 - → range 300nm 600nm
- averaged over all incidence angles

Module	Mean QE [%]	Peak QE [%]	A _{eff} [cm²]	Noise [Hz]
UBA WOM	124	3.18	28.1	~ 10
EG WOM	1.43	3.86	32.4	~ 10
GaAsP WOM	2.64	7.86	59.7	10 ⁶
IceCube DOM	7.49	13.4	18.0	800

Time resolution

Toy Monte Carlo

- random incidence
- photon capture
- re-emission
 - →QE ~ 85%
- propagation

Results

- Capture efficiency (with mirror)
 →ε_{WLS} = 35 %
- Time resolution (2m bar)
 - →RMS(т) = 2.74 ns

Re-emission time

- 8.5 ns
 - → dominates over propagation

Prospective developments

Related research field

- Luminescent solar concentrators (LSC)
 - capture solar light in WLS
 - concentrate on solar cell
 - → solar energy

Explored technologies

- Organic thin films
- Custom made luminosphores
- Alignment of luminosphores
- Selective mirrors
- Quantum Dots
- Geometry
-

→ Can improve A_{eff} by large factor

Technique used to capture solar energy e.g. Debije & Verbunt, 2011 Baldo et al., Science 2008

Prospects I: UV extension

Problem

- PVT (and PMMA) hosts
 - →not transparent to UV light

Solution

thin WLS film on clear light guide
 →avoid absorption

Prospects II: reabsorption

Problem

• shifted photons reabsorbed in dye

Solution

- dyes arranged in zeolite nanotubes
- Förster Resonant Energy Transfer (FRET)
 - →Luminophores with taylored stokes shift
- commercially available
 - → ZeoFRET http://www.optical-additives.com/

Prospects III: geometry

Bar

• photon loss on 4 edges

Tube

photon loss on 2 edges only
→ double efficiency

Summary

WOM concept offers several promises

- current estimated sensitivity ≥ DOM
- noise rate <10 Hz due to passive WLS
- boost due new photonics technology
- directional resolution by segmentation
- adaptible size (e.g. 10 cm diameter tubes)
- small PMT surface
 - →new technologies?

Next step

 build prototype with off-the-shelf components

