Development in PMTs for advanced Fluorescence **Telescopes**

Sven Querchfeld, Karl-Heinz Kampert, Daniel Kruppke-Hansen, Julian Rautenberg

HAP Workshop Advanced Technologies January 24th 2013

Astroteilchenphysik

bmb+f - Förderschwerpunkt 🌈 ASSOCIATION

s.guerchfeld@uni-wuppertal.de

Alliance for Astroparticle Physics

The Pierre Auger Observatory

- largest experiment to detect cosmic rays at highest energies
- 3000 km², hybrid detector
 - 1660 surface detectors
 - 24 fluorescence telescopes
 - ► +3 HEAT tel.
 - ► radio array
 - muon detectors

The Pierre Auger Observatory

- largest experiment to detect cosmic rays at highest energies
- 3000 km², hybrid detector
 - 1660 surface detectors
 - 24 fluorescence telescopes
 - ► +3 HEAT tel.
 - radio array
 - muon detectors

Fluorescence Telescopes

- optimized for fluorescence light between 300 nm and 400 nm
- camera: 440 photomultiplier (PMT)
- transition between PMTs is covered by light guides

Fluorescence Telescopes

- optimized for fluorescence light between 300 nm and 400 nm
- camera: 440 photomultiplier (PMT)
- transition between PMTs is covered by light guides

Motivation

'Auger-Next'

- ▶ new observatory (>10 000 km²)
- new fluorescence detectors/design
- new PMTs with higher quantum efficiency (QE) available
- Photonis stopped PMT-production and delivery before HEAT was equipped (re-opened by HZC Photonics in Dec. 2012)

Telescope Simulation

Detector simulation of proton and iron showers with enhanced QE PMTs:

- simulation show increased performance for fd telescopes
 - ► HEAT: below ~ 10¹⁷ eV already for one upgraded HEAT camera
 - CO: higher energies
- telescopes see further away

Region which most benefits from HEAT upgrade is exactly where most enhancements are located (AERA, AMBER, AMIGA, Infill)

Photomultiplier

	XP3062	Ham. R9420-100	Ham. R8900-100
Faceplate	hexagonal	round	square
Photocathode	bialkali	super-bialkali	super-bialkali
Window	lime glass	borosilicate	borosilicate
Dynode structure/stages	lin. focused/ 8	lin. focused/ 8	metal channel/ 10
Gain	2.6×10^5	3.7×10^5	1×10^{6}
Supply Voltage [V] typ.	1100	1300	800
max.	1300	1500	900
Dark current [nA] typ.	1	10	2
max.	20	100	20
Cathode sens. $[mA/W]$	90	110	110
$Q.E{\rm at\ peak\ wavelength}$	27%	35%	35%
Rise Time [ns]	3	1.6	1.8

S. Querchfeld (Uni Wuppertal)

QE Test Setup in Wuppertal

 $QE_{PMT}(\lambda) = QE_{Ref}(\lambda) \cdot rac{|I_{PMT}| - |I_{ped,PMT}|}{|I_{Ref}| - |I_{ped,Ref}|}$

filter wheel

QE Measurement

- measurement in reference to calibrated photodiode
- higher QE verified

S. Querchfeld (Uni Wuppertal)

Development in PMTs for advanced Fluorescence Telescopes 24.01.2013 7 / 21

Uniformity

S. Querchfeld (Uni Wuppertal)

Development in PMTs for advanced Fluorescence Telescopes 24.01.2013

8 / 21

Uniformity

Uniformity

10 / 21

S. Querchfeld (Uni Wuppertal)

Development in PMTs for advanced Fluorescence Telescopes 24.01.2013

Linearity

Linear relation between charge and light

- important for energy estimation
- depends on voltage divider
- measured with calibrated attenuation filters
 - resistor ratio optimized

S. Querchfeld (Uni Wuppertal)

Development in PMTs for advanced Fluorescence Telescopes 24.01.2013

11 / 21

- occure due to luminous reactions & ionisation of residual gases
- transit time:
 - ► lum. reactions: after 20 ns to 100 ns
 - ▶ ionisation: few 100 ns to several µs
- problematic if large afterpulse can not be separated from signal
- measurement:
 - average over 1000 pulses
 - calculate ratio of charge in afterpulse to signal

Afterpulses

S. Querchfeld (Uni Wuppertal)

Qualification Benchmark

- 500 PMTs ordered to equip a new camara
- gain classification (2×10^5)
 - ► 22 PMTs at same HV
- tested for linearity, afterpulse and spectral response
- delivered to Argentina in March 2011

Winston Cones

To increase effective area gaps between PMTs have to be covered

Winston cone:

- geometry given by PMT radius and max. acceptance angel
- modification for transition of round to hexagonal
- since focal plane is on a sphere \rightarrow difficult to produce

Test of KIT prototype at LosLeones

R9420-100 mod

Further development of R9420-100 available and ongoing (coop. of Hamamatsu & CTA):

- 1.5" tube + SBA photocathode
- dynode structure from 1" PMT (R8619)
- frosted hemispherical window
 - + elongated way through cathode
 - + scattered photon can hit hemispherical cathode twice
 - + traped between two layers
 - larger reflectivity than

QE R9420-100 mod

• measurement in reference to calibrated photodiode

• single prototype: almost 40% QE

S. Querchfeld (Uni Wuppertal)

Development in PMTs for advanced Fluorescence Telescopes 24.01.2013 17 / 21

Afterpulse R9420-100 mod

- reduced afterpulses due to smaller dynode structure
- singel prototype: almost no afterpulsing

Additional Measurements: MAPMTs

Further analysis of MAPMTs for different experiment/ new FD telescope design:

 single photon spectrum of 2" H8500 MAPMT compared to 1" R11265

S. Querchfeld (Uni Wuppertal)

WLS

Enhance efficiency of RICH-detector with WLS p-terphenyl

- p-terphenyl dip-coating of PMTs (by Michael Dürr, HS Esslingen)
- absorption: $\sim 240 \,\mathrm{nm}$ emission: $\sim 350 \,\mathrm{nm}$
- gain in efficiency of 12% for specific mirrors and gas

WLS

Enhance efficiency of RICH-detector with WLS p-terphenyl

- p-terphenyl dip-coating of PMTs (by Michael Dürr, HS Esslingen)
- absorption: $\sim \! 240 \, \mathrm{nm}$ emission: $\sim \! 350 \, \mathrm{nm}$
- gain in efficiency of 12% for specific mirrors and gas

Summary & Outlook

- new PMTs with higher QE available
- test setup for QE-scans build in Wuppertal
- $\bullet~$ R9420-100 ordered, benchmarked and delivered to Argentina $\rightarrow~$ equip one camera
- further developments are ongoing (CTA & Hamamatsu)

ToDo:

- Winston cones
- further tests of latest PMTs
- new design studies for future FD telescopes

BackUp Slides

Detector Simulation

Monte-Carlo sim. of proton and iron showers for energies from $1\times 10^{17}\,{\rm eV}$ to $1\times 10^{19.5}\,{\rm eV}$

Uniformity R9420-100 mod

S. Querchfeld (Uni Wuppertal)