Fast sampling of liquid xenon scintillation pulse shape

application in direct Dark Matter detection

Bastian Beskers HAP Topic 4: Advanced Technologies 24. january 2013 JOHANNES GUTENBERG UNIVERSITÄT MAIN

Outline

Fast sampling of liquid xenon scintillation pulseshape

- principle of a dual-phase TPC
- motivation for S1 pulseshape measurement
- technical design and status
- outlook

principle dual-phase TPC

3D-position reconstruction

x/y-position

position of S2 detected by a photosensor array

z-position

time difference between S1 and S2

background discrimination

background discrimination: S2/S1

measurement of charge and light yield

background discrimination

background discrimination: S2/S1

Can S1 pulseshape be used for further background discrimination?

S1 pulse shape

different scattering particles

comparing electron, alpha and fission fragment induced scintillation:

electron:

• τ = 45 ns

alpha:

- $\tau_{\rm S} = 4.2 \text{ ns}$
- τ_T = 22 ns

fission fragments:

- $\tau_{\rm S} = 4.1 \, \rm ns$
- $\tau_{T} = 21 \text{ ns}$

Physical Review B - Vol.27 - No. 9, May 1983 A. Hitachi, T. Takahashi: *"Effect of ionization density on the time dependence of luminescence from liquid argon and xenon"*

S1 pulse shape

comparing different electrical driftfields (electron recoils):

- E = 0 kV/cm
- τ = 34±2 ns
- E = 4 kV/cm
- $\tau_{S} = 2.2 \pm 0.3$ ns
- τ_T = 27±1 ns

J . Phys. C : Solid State Phys., Vol. 11, 1978 Shinzou Kubota, Masahiko Hishida and Jian-zhi Raun: *"Evidence for a triplet state of the self-trapped exciton states in liquid argon, krypton and xenon"*

S1 pulseshape background discrimination?

S1 pulse shape depends on:

- type of scattering particle
- applied drift field
- => ionization density

Can S1 pulseshape be used for further background discrimination?

• systematic tests with modern instrumentation required!

TPC design

Instrumentation

- QE > 30% @ 178 nm
- compact design
 - 2 inch diameter
 - 32 mm heigth
 - cathode active diameter: 45 mm
- measure S1 and S2 (energy)

8 APDs:

- active area: 14x14 mm²
- QE ~ 30% @ 178nm
- no housing little passive material
- measure S2 (x-y-position)

5 GS/s FADC (Struck SIS3305) 10 bit 2/4/8 channels

- 5/2.5/1.25 GS/s
- 1.5 GHz bandwidth

PMT: R6041

PMT single photo electron pulseshape

Datasheet figures (800V)

gain: 1 x 10⁶ anode pulse rise time: 2.3 ns electron transit time: 16 ns transit time spread: 0.75 ns

supply voltage volts	rise time ns	fall time ns	pulse width ns	gain 10⁰ e⁻ per p.e.
750	2.249	14.16	33.96	-
800	2.229	14.29	33.73	2.3
850	2.132	16.09	33.56	4.9
900	1.997	18.34	33.39	9.4

APD: RMD S1315

measuring gain and QE

avalanche photo diodes

setting up the cooling and temperature control system and preparing to fill with Xenon these days rotatable disc (45° precise positioning) with Am241-source and optical fibre mounted on bottom side (not visible here)

APD gain

measured gain of APDs @ 165 K

measurement using a LED measured gain \leq 1500 less than expected - saturation?! => will be tested

TPC: field cage

PCB for field shaping pitch: 1 mm

<u>meshes</u> pitch: 268 μm

wire-width: 14 µm

schematic: cryo-system

status and outlook

<u>status:</u>

- TPC is being manufactured (about 2 weeks to go)
- ongoing tests with the photosensors
- design of cryo-system and Compton scatter experiment

outlook:

- measurement of scintillation and ionization yield of LXe at low energies
- systematic measurement of scintillation pulseshape at
 - different drift fields
 - different recoil energies
 - different particles (gamma, neutron)
- fast readout using a commercial FADC
 - DM experiments: need a cheaper option (e.g. switched capacitor arrays)

Bastian Beskers beskers@uni-mainz.de HAP Topic 4 – Advanced Technologies KIT Karlsruhe 24. january 2013

Questions?

Thanks to all collaborators:

uwe oberlack
Rainer othegraven
Matthias MorbitZer
Cyril Grignon
Pierre Sissol

http://xenon.physik.uni-mainz.de/