JEM-EUSO status and technological challenges

Andreas Haungs Karlsruhe Institute of Technology haungs@kit.edu

HELMHOLTZ GEMEINSCHAF

wp4-Jan13

Andreas Haungs, JEM-EUSO

PARTEN TWO KARD

Multi-messenger Approach in Astroparticle Physics

GEMEINSCHAFT WP4-Jan13

Andreas Haungs, JEM-EUSO

3

Allianz für Astroteilchenphysik

JEM-EUSO Collaboration

J.H. Adams Jr.^{md}, S. Ahmad^{ba}, J.-N. Albert^{ba}, D. Allard^{bb}, M. Ambrosio^{df}, L. Anchordoqui^{me}, A. Anzalone^{dh}, Y. Arai^{ev}, C. Aramo^{df}, K. Asano^{et}, M. Ave^{kf}, P. Barrillon^{ba}, T. Batsch^{hc}, J. Baver^{cd}, T. Belenguer^{kb}, R. Bellotti^{db}, A.A. Berlind^{mg}, M. Bertaina^{dl,dk}, P.L. Biermann^{cb}, S. Biktemerova^{*ia*}, C. Blaksley^{*bb*}, J. Błęcki^{*he*}, S. Blin-Bondil^{*ba*}, J. Blümer^{*cb*}, P. Bobik^{*ja*}, M. Bogomilov^{*aa*}, M. Bonamente^{md}, M.S. Briggs^{md}, S. Briz^{ke}, A. Bruno^{da}, F. Cafagna^{da}, D. Campana^{df}, J-N. Capdevielle^{bb}, R. Caruso^{dc}, M. Casolino^{ew,di,dj}, C. Cassardo^{dl,dk}, G. Castellini^{dd}, O. Catalano^{dh}, A. Cellino^{dm,dk}, M. Chikawa^{ed}, M.J. Christl^{mf}, V. Connaughton^{md}, J.F. Cortés^{ke}, H.J. Crawford^{ma}, R. Cremoninid¹, S. Csorna^{mg}, J.C. D'Olivo^{ga}, S. Dagoret-Campagne^{ba}, A.J. de Castro^{ke}, C. De Donato^{di,dj}, di, de [a) faille^{ba}, <u>L</u>, del Peral^{kd}, A. Dell'Oro^{dm,dk} M.P. De Pascale^{di,dj}, M. Di</sup> A. Ebersoldt^{cb}, T. Ebisuzaki^{ew}, R. Engel^{cb}, S. Falk^{cb}, Martino^{dm,d} G. Dist tis^{cd}, 1. Dupie K. rang ..., r. renter, I. Fernandez, C. mer F. F. raise, durate Direct childe, I. Fujimoto^{ev},
 M. Fukushima^{eg}, P. Galcotti^{dl,dk}, G. Garipov, J. G. ary ^d, I.G. Giaciar ⁽²⁾ C. Gaudo^{dk},
 M. Gonchar^{de}, C. González, Alumenta^{kk}, P. G. Lint, ^(k) M. Gonchar^{ia}, C. González Alvarado^{kb}, P. Gorodetzky^{bb}, F. Guarino^{ardg}, A. Guarino^d, A. Guarino^d, Y. achisu^{ew} B. Harlov^{ib}, A. Haungs^{cb}, J. Hernández Carretero^{kd}, K. Higashide^{er,ew}, T. Iguchi^{ei}, D. Ikeda^{eg}, H. Ikeda^{ep}, N. Inoue^{er}, S. Inoue^{eu}, A. Insolia^{dc}, F. Isgrö^{df,dg}, Y. Itow^{en}, E. Joven^{kg}, E.G. Judd^{ma}, A. Jung^{fc}, F. Kajino^{ei}, T. Kajino^{el}, I. Kaneko^{ew}, Y. Karadzhov^{aa}, J. Karczmarczyk^{hc}, M. Karus^{cb}, K. Katahira^{ew}, K. Kawai^{ew}, Y. Kawasaki^{ew}, B. Keilhauer^{cb}, B.A. Khrenov^{ic}, Jeong-Sook Kim^{fb}, Soon-Wook Kim^{fb}, Sug-Whan Kim^{fd}, M. Kleifges^{cb}, P.A. Klimov^{ic}, S.H. Ko^{fa}, D. Kolev^{aa}, I. Kreykenbohm^{ca}, K. Kudela^{ja}, Y. Kurihara^{ev}, E. Kuznetsov^{md}, G. La Rosa^{dh}, J. Lee^{fc}, J. Licandro^{kg}, H. Lim⁴, F. Jón ⁴, M.C. Maccarone^{dh}, K. Mannheim^{ce}, L. Marcelli^{di,dj}, A. Marini^{de}, G. Martin-Chassard^b, O. N. ¹a, ²a^g</sup>, G. Masciantonio^{di,dj}, K. Mase^{ea}, R. Matev^{aa}, A. Maurissen^{la}, G. Medina-Tanco^{sea}, J. Me fike H. Mi united Y Miyazi f^{ee} S Mizumoto^{el}, G. Modestino^{de}, D. Monnier-Ragaigne^{ba}, J.A. Morales of lo Río^{sea}, Mor, T. Huskami^{ef}, M. Nagano^{ec}, M. Nagata^{ch}, S. Nagataki^{ek}, T. Nakamura^{ej}, J.W. Nani, S. Nm^{fe} K. nam, T. Karastapa^{de} D. Naumov^{ia}, A. Neronov^{lb}, K. Nomoto^{eu}, T. Nonaka^{eg}, T. Ogawa^{ew}, S. Ogi . Onnto^{mb} P. Orleański^{he}, G. Osteria^{df}, N. Pacheco^{kc}, M.I. Panasyuk^{ic}, E. Parizot^{bb}, T.H. C. B. Stircak^{ja}, T. Patzak^{bb}, T. Paul^{me}, C. Pennypacker^{ma}, T. Peter^{lc}, P. Picozza^{di,dj,ew}, A. Pollini^{la}, H. Prieto^{kd,ka}, P. Reardon^{md}, M. Reina^{kb}, M. Reyes^{kg}, M. Ricci^{de}, I. Rodríguez^{ke}, M.D. Rodríguez Frías^{kd}, F. Rongade, H. Rothkaehlhe, G. Roudilbc, I. Rusinovaa, M. Rybczyńskiha, M.D. Sabaukb, G. Sáez Canokd, H. Sagawa^{eg}, A. Saito^{ej}, N. Sakaki^{cb}, M. Sakata^{ei}, H. Salazar^{gc}, S. Sánchez^{ke}, A. Santangelo^{cd}, az^{cd} 4. Schuler^{cb}, V. Scotti^{df,dg}, M. Scuderi^{dc}, A. Segreto^{dh}, S. Selmane^{bb}, D. Semikoz^{bb}, Serra , Shary In^{ic}, T. Shibata^{eq}, H.M. Shimizu^{em}, K. Shinozaki^{ew}, T. Shirahama^{er}, G. Siemienne-Ozir 40th, H.I. an u.F. ópez^{9a}, J. Sledd^{m J}, K. Stomińska^{he}, A. Sobey^{m J}, T. Sugiyama^{em}, D. Supanitsky^{9a}, M. Suzuki^{ef}, B. izah islama, Szabelski^{he}, F. Tajima^{ee}, N. Tajima^{ew}, T. Tajima^{ee}, Thzer^{cd}, O. Tibolla^{ce}, L. Tkachev^{ia}, Y. Takahashi^{es}, H. Takami^{ev}, M. Take, ^e Y. taki aw T. Tomidaew, N. Toneew, F. Trillaudga, R. Tsenov, K. Tsu ieckahd, Y. Uchihorieb, O. Vaduvescukg, J.F. Valdés-Galiciaga, P. Vallaniadm, dk, L. Va L. Villaseñor^{gb}, P. von Ballmoos^{bc}, S. Wada^{ew}, J. Watanabe^{el}, S. Watanabe^{el}, J. tts Jr.^{md} M. Weber^{cb}, T.J. Weiler^{mg}, T. Wibig^{hc}, L. Wiencke^{mc}, M. Wille^{ca}, J. Wilms^{ca}, Z. Wiouarczyk^{ha}, T. Yamamoto^{ei}, Y. Yamamoto^{ei}, J. Yang^{fc}, H. Yano^{ep}, I.V. Yashin^{ic}, D. Yonetoku^{ef}, K. Yoshida^{ei} S. Yoshida^{ea}, R. Young^{mf}, A. Zamora^{ga}, A. Zuccaro Marchi^{ew}

<text>

JEM-EUSO Collaboration

J.H. Adams Jr.^{md}, S. Ahmad^{ba}, J.-N. Albert^{ba}, D. Allard^{bb}, M. Ambrosio^{df}, L. Anchordoqui^{me}, A. Anzalone^{dh}, Y. Arai^{ev}, C. Aramo^{df}, K. Asano^{et}, M. Ave^{kf}, P. Barrillon^{ba}, T. Batsch^{hc}, J. Baver^{cd}, T. Belenguer^{kb}, R. Bellotti^{db}, A.A. Berlind^{mg}, M. Bertaina^{dl,dk}, P.L. Biermann^{cb}, S. Biktemerova^{ia}, C. Blaksley^{bb}, J. Błęcki^{he}, S. Blin-Bondil^{ba}, J. Blümer^{cb}, P. Bobik^{ja}, M. Bogomilov^{aa}, M. Bonamente^{md}, M.S. Briggs^{md}, S. Briz^{ke}, A. Bruno^{da}, F. Cafagna^{da}, D. Campana^{df}, J-N. Capdevielle^{bb}, R. Caruso^{dc}, M. Casolino^{ew,di,dj}, C. Cassardo^{dl,dk}, G. Castellini^{dd}, O. Catalano^{dh}, A. Cellino^{dm,dk}, M. Chikawa^{ed}, M.J. Christl^{mf}, V. Connaughton^{md}, J.F. Cortés^{ke}, H.J. Crawford^{ma}, R. Cremoninid¹, S. Csorna^{mg}, J.C. D'Olivo^{ga}, S. Dagoret-Campagne^{ba}, A.J. de Castro^{ke}, C. De de la laille^{ba}, L. del Peral^{kd}, A. Dell'Oro^{dm,dk} M.P. De Pascale^{di,dj}, M. Di Donato^{di,dy}. Martino^{dm,d} A. Ebersoldt^{cb}, T. Ebisuzaki^{ew}, R. Engel^{cb}, S. Falk^{cb}, S. Furra sseu^{db}, R. Hurzerschi^{de}, I. Fujimoto^{ev}, G. Dist tis^{cd}, 1. Dupie A. rang^{we}, F. Fente, J. Ferne des Come⁺ (a. F. raise d^hine. Einzerschi^{de} I. Fujimoto^{ev}, M. Fukushima^{eg}, P. Galeotti^{dl,dk}, G. Garipov, J. G. ary^{-t}, I. G. Giacuar (C. Gaudo^{dk}), M. Gonchar^{di}, C. Gaudo^{dk}, Almonia ^{1,kk}, P. G. Giacuar (C. Gaudo^{dk}), M. Gonchar^{ia}, C. González Alvarado^{kb}, P. Gorodetzky^{bb}, F. Guarino^{ardg}, A. Gu achisu^{ew}. B. Harlov^{ib}, A. Haungs^{cb}, J. Hernández Carretero^{kd}, K. Higashide^{er,ew}, T. Iguchi^{ei}, D. Ikeda^{eg}, H. Ikeda^{ep}, N. Inoue^{er}, S. Inoue^{eu}, A. Insolia^{dc}, F. Isgrò^{df,dg}, Y. Itow^{en}, E. Joven^{kg}, E.G. Judd^{ma}, A. Jung^{fc}, F. Kajino^{ei}, T. Kajino^{el}, I. Kaneko^{ew}, Y. Karadzhov^{aa}, J. Karczmarczyk^{hc}, M. Karus^{cb}, K. Katahiraew, K. Kawaiew, Y. Kawasakiew, B. Keilhauereb, B.A. Khrenovic, Jeong-Sook Kimfb, Soon-Wook Kim^{fb}, Sug-Whan Kim^{fd}, M. Kleifges^{cb}, P.A. Klimov^{ic}, S.H. Ko^{fa}, D. Kolev^{aa}, I. Kreykenbohm^{ca}, K. Kudela^{ja}, Y. Kurihara^{ev}, E. Kuznetsov^{md}, G. La Rosa^{dh}, J. Lee^{fc}, J. Licandro^{kg}, H. Lim⁴, F. Jón ⁴, M.C. Maccarone^{dh}, K. Mannheim^{ce}, L. Marcelli^{di,dj}, A. Marini^{de}, G. Martin-Chassard^b, O. N. ¹a, ²a^g</sup>, G. Masciantonio^{di,dj}, K. Mase^{ea}, R. Matev^{aa}, A. Maurissen^{la}, G. Medinaand Y. Hyazi fi^{ce}, O. Mizumoto^{el}, G. Modestino^{de}, D. Monnier-Ríce⁶³, Mour, T. Artusami^{ef}, M. Nagano^{ce}, M. Nagata^{ch}, W. Nani, J. N. M^{fel}, K. and T. Januatano^{de}, D. Naumov^{ta}, Tanco^{ga}, . Me fk H. Mi an Ragaigne^{ba}, J.A. Morales d. Ic. Ríd S. Nagataki^{ek}, T. Nakamura^{ej}, J.W. Namisso, N A. Neronov^{1b}, K. Nomoto^{eu}, T. Nonaka^{eg}, T. Ogawa^{ew}, S. Og . Onnto^{mb} P. Orleański^{he}, G. Osteria^{df}, N. Pacheco^{kc}, M.I. Panasyuk^{ic}, E. Parizot^{bb}, T.H. C. B. Stircak^{ja}, T. Patzak^{bb}, T. Paul^{me}, C. Pennypacker^{ma}, T. Peter^{lc}, P. Picozza^{di,dj,ew}, A. Pollini^{la}, H. Prieto^{kd,ka}, P. Reardon^{md}, M. Reina^{kb}, M. Reyes^{kg}, M. Ricci^{de}, I. Rodríguez^{ke}, M.D. Rodríguez Frías^{kd}, F. Rongade, H. Rothkaehlhe, G. Roudilbc, I. Rusinovaa, M. Rybczyńskiha, M.D. Sabaukb, G. Sáez Canokd, H. Sagawa^{eg}, A. Saito^{ej}, N. Sakaki^{cb}, M. Sakata^{ei}, H. Salazar^{gc}, S. Sánchez^{ke}, A. Santangelo^{cd}, nz^{cd} A. Schuler^{cb}, V. Scotti^{df,dg}, M. Scuderi^{dc}, A. Segreto^{dh}, S. Selmane^{bb}, D. Semikoz^{bb}, Serra , Shary In^{ic}, T. Shibata^{eq}, H.M. Shimizu^{em}, K. Shinozaki^{ew}, T. Shirahama^{er}, G. Siemience-Ozir 40th, H.I. anart ópez^{9a}, J. Sledd^{m J}, K. Słomińska^{he}, A. Sobey^{m J}, T. Sugiyama^{em}, D. Supanitsky^{9a}, M. Suzuki^{ef}, B. *izab* sleven, Szabelski^{he}, F. Tajima^{ee}, N. Tajima^{ew}, T. Tajima^{ec}, Tozer^{cd}, O. Tibolla^{ce}, L. Tkachev^{ia}, Y. Takahashi^{es}, H. Takami^{ev}, M. Take, 1^{et}, Y. Taki, aw ieckahd, Y. Uchihorieb. T. Tomida^{ew}, N. Tone^{ew}, F. Trillaud^{ga}, R. Tsenov, K. Fsu O. Vaduvescu^{kg}, J.F. Valdés-Galicia^{ga}, P. Vallania^{dm,dk}, L. Va L. Villaseñor^{gb}, P. von Ballmoos^{bc}, S. Wada^{ew}, J. Watanabe^{el}, S. Watanabe^{el}, J. tts Jr.^{md} M. Weber^{cb}, T.J. Weiler^{mg}, T. Wibig^{hc}, L. Wiencke^{mc}, M. Wille^{ca}, J. Wilms^{ca}, Z. Wiocarczyk^{ha}, T. Yamamoto^{ei}, Y. Yamamoto^{ei}, J. Yang^{fc}, H. Yano^{ep}, I.V. Yashin^{ic}, D. Yonetoku^{ef}, K. Yoshida^{ei}, S. Yoshida^{ea}, R. Young^{mf}, A. Zamora^{ga}, A. Zuccaro Marchi^{ew}

JEM-EUSO main features

Method: fluorescence (full calorimetric)

Large field of view: ± 30° thanks to double sided spherical Fresnel lenses

At 400 km (ISS): 2 10⁵ km² (nadir mode) up to 10⁶ km² (tilted mode)

No need for stereo: 400 km >> shower length (TPC with a drift velocity = c)

HELMHOLTZ

GEMEINSCHAF

wp4-Jan13

6

technical aspects (examples) : telescope

Parameter	Value		
Launch date	JFY 2016		
Mission Lifetime	3+2 years		
Rocket	H2B		
Transport Vehicle	HTV		
Accommodation on JEM	EF#2		
Mass	1938 kg		
Power	926 W (op.) 352 W (non op.)		
Data rate	285 kbps (+ on board storage)		
Orbit	400 km		
Inclination of the Orbit	51.6°		
Operation Temperature	-10° to 50°		

- 2.65m x 1.90m x 3.50m ; 2 tons
 have to fit into the rocket
- expansion at the ISS

7

technical aspects (examples) : Fresnel lenses

Tested performances meet already the requirements
two month production time per lense

wp4-Jan13

A

HELMHOLTZ

Allianz für Astroteilchenphysik

Focal surface:

- prototypes of PDM in preparation
- FoV of 1 PDM = 27 x 27 km²

technical aspects (examples) : MAPMT

Ultra Bialkali ZB0765 Average: $(24.4 \pm 1.8)\%$

+UV Filter

- •23.04mm * 23.04mm effective area
- •8*8 Channels 2.88mm * 2.88mm
- Ultra bi-alkali photo-cathode
- •12 dynodes + 1 guard ring •Gain of $\sim 10^6$
- •Photon detection efficiency ~ 30%
- •Near-ultraviolet wavelength region
- •Clearly separated pixels
- No crosstalk

- Collaboration with HamamatsuReduction of size,
- increase of anode number
- Improvement of Quantum efficiency
- Improvement of uniformity of response

?? Use of SiPMs ??

technical aspects (examples) : focal surface

Elementary Cell (EC)

C3 Case: Von Mises Stress

Photo detection module (PDM)

- vibration safe
- HV switches
- fast switch-off of PDMs
- trigger logic

technical aspects (examples) : focal surface

ASIC-Board

Packaging:CQFP160 pins

HELMHOLTZ | GEMEINSCHAFT WP4-Jan13 Allianz für Astrotelichenphysik

12

technical aspects (examples) : calibration

- Efficiency dominated by electrostatics of the cathode
- Gain dominated by the dynodes and HV
- On ground Calibration in *single photon mode*
 - Good photon shielding (black box)
 - Number of photons coming from light source Every single pixel by itself
 - Confined spot size of light source
 - Measure single photoelectron spectra & s-curves

also: LIDAR + Xe-flasher from ground....

technical aspects (examples) : calibration

- in-flight calibration
- absolute, homogenous light source needed
- illumination of whole focal surface
- optics + detector calibration
- applied during day (lid closed, every 45 mins)

technical aspects (examples) : DAQ

JEM-EUSO mock-up model

Andreas Haungs, JEM-EUSO

16

JEM-EUSO: the full machine

technical aspects (examples) : Atmospheric Monitoring

Atmospheric Monitoring System

IR Camera

Imaging observation of cloud temperature inside FOV of JEM-EUSO

Lidar

Ranging observation using UV laser

JEM-EUSO "slow-data"

Continuous background photon counting

- Cloud amount, cloud top altitude: (IR cam., Lidar, slow-data)
- Airglow:
- Calibration of telescope:

(slow-data)

(Lidar)

wp4-Jan13

Main Physics Program Main scientific objectives

- Measurement of Ultra-high energy Cosmic Rays
- → Astronomy and Astrophysics through the particle channel = Physics and Astrophysics at E > 5.×10¹⁹eV

Exploratory scientific objectives

- Exploratory Objectives: new messengers
 - Discovery of UHE neutrinos
 - discrimination and identification via X₀ and X_{max}
 - Discovery of UHE Gammas

discrimination of \mathbf{X}_{\max} due to geomagnetic and LPM effect

- Exploratory Objectives: magnetic fields
- Exploratory Objectives: Atmospheric science
 - Nightglow
 - Transient luminous events
 - Space-atmosphere interactions
 - climate change
 - with the fast UV monitoring of the Atmosphere

Andreas Haungs, JEM-EUSO

19

(Elaboration of figure by Lyons et al. 2000)

The observation technique

Allianz für Astroteilchenphysi

Andreas Haungs, JEM-EUSO

Allianz für Astroteilchenphysik

21

JEM-EUSO Performance: Annual Exposure

Depends on zenith angle and energy ... and is determined by four factors:

 $TA \rightarrow Trigger \ Aperture \ \ {}^{\text{Determined by the trigger}}_{\text{efficiency}}$

 $\eta \rightarrow duty \ cycle$

Determined by the background (and operation)

 $K \rightarrow cloud \ impact$ Determined by the cloud coverage

 $l \rightarrow cital ghts \& lightnings$

Local effects which limit the aperture

wp4-Jan13

JEM-EUSO Performance: Efficiency

JEM-EUSO Performance: duty cycle

- No moon: ~17%
- Accepting little moon light: ~20.5%

(from analytical calculations)

25

JEM-EUSO Performance: city lights & lightnings

CITY LIGHTS:

~ 7% (DMSP data)

LIGHTNINGS:

- ~ 2% (Tatiana data)
- **→** *l* = 91%

$l \rightarrow citylights \& lightnings$

JEM-EUSO Performance: cloud impact

➔ Most EAS relevant for JEM-EUSO reach maximum above the typical cloud altitudes!

JEM-EUSO Performance: reconstruction with clouds

shower profiles are attenuated for optically thin clouds (eg. cirri).

- optically thick clouds (eg. strati) block photons emitted below cloud
- cloud reflected Cherenkov light improves the reconstruction

NSCHAFT Wp4-Jan13

JEM-EUSO Performance: cloud coverage

Clear sky ~ 31% Green band ~ 60%

Cloud top

	<3.2 km	3.2-6.5 km	6.5-10 km	>10 km
OD>2	16	5.9	8.6	5.0
OD:1-2	6.0	3.0	4.2	2.5
OD:0.1-1	6.5	2.0	3.2	5.0
OD<0.1	31	<0.1	<0.1	1.2

 Occurrence of clouds (in %) between 50° N and 50° S on TOVS database (Confirmed by ISCCP,CACOLO & MERIS database)

 \rightarrow In ~72% of the cases the UV track including X_{max} is observable

wp4-Jan13

Andreas Haungs, JEM-EUSO

29

A HELMHOLTZ

JEM-EUSO Exposure (...Nadir mode)

- With tight geometrical cuts a direct comparison with ground-based observatories possible
- full FOV provides about one order higher exposure than Auger at higher energies
- When accepting higher BG level improvements possible

wp4-Jan13

JEM-EUSO: aperture

Uniform coverage of both hemispheres!

TA-EUSO

Cross-calibration tests at Telescope Array site, Utah

- Main purpose: calibration using existing FD telescope
- Lidar and electron beam → absolute calibration
- Few showers in coincidence with TA
- Later repeat also at the Pierre Auger Observatory

Operation early 2013!

wp4-Jan13

HELMHOLTZ

Allianz für Astroteilchenphysi

EUSO-Balloon JEM-EUSO prototype at 40km altitude

Main purpose: Background measurements and engineering tests

- Engineering test
- UV-Background measurement
- Air shower observations from 40 km altitude First flight: 2014!

Technical Readiness Level (TRL) – scheme of space agencies

Technical Readiness Level (TRL) – scheme of space agencies

We are here!!

(successful Balloon flights will be TRL5)

space challenge is given by

a) severe thermal constrains

(heat flow through radiation)

b) severe vibration constrains

(due to launch and re-enter)

- c) radiation hardness issue
- d) power limitations
- e) ITAR free elements
- f) safety issues related to the use on the ISS

JEM-EUSO

Study of EECR from

- Ground (Utah) early 2013
- Balloon (40 km) → 2014-15
- − Space (ISS) → launch 2017

- (Advanced) Technologies
 - Electronics: large amount on boards, have to be small, have to meet space requirements
 - Very tight schedule

wp4-Jan13

GEMEINSCHAFT

Allianz für Astroteilchenphysik

