

HAP Topic 4 Workshop Jan. 24-25th 2013

Rayk Nachtigall

rayk.nachtigall@uni-hamburg.de

Karlsruhe January 25th 2013

- Physics motivation
- The HiSCORE detector
- Signal processing
- Physics potentials in γ-ray astronomy

- Current state and plans

The Hundred*i Square-km Cosmic ORigin Explorer

Cosmic-rays: 100 TeV $< E_{CR} < 1$ EeV

Gamma-rays: $E_{\gamma} > 10$ TeV, up to PeV, ultra-high energy regime

Particle physics: beyond LHC range

Concept: non-imaging air Cherenkov technique

Large area: up to few 100 km² 2011AdSpR..48.1935T, astro-ph/1108.5880 http://wwwiexp.desv.de/groups/astroparticle/

Large Field of view: ~ 0.6 sr

2011AdSpR..48.1935T, astro-ph/1108.5880 http://wwwiexp.desy.de/groups/astroparticle/score/ http://tunka-hrjrg.desy.de/ http://de.wikipedia.org/wiki/HiSCORE

Physics motivations

Cosmic rays

ELMHOLTZ GEMEINSCHAFT

Spectrum&composition in transition range Galactic / extragalactic origin

rayk.nachtigall@uni-hamburg.de

Tevatron sky

Pevatron sky

GEMEINSCHAFT

Accessing the pevatron sky: large area

How to achieve large effective area ?

 Imaging air Cherenkov telescopes: O(1000) channels / km²

Non-imaging air Cherenkov technique: O(100) channels / km²

How to achieve large effective area ?

 Imaging air Cherenkov telescopes: O(1000) channels / km²

Non-imaging air Cherenkov technique: O(100) channels / km²

Picture: Serge Brunier

ELMHOLTZ GEMEINSCHAFT

ET 9352KB 8" PMT with 6 stages nominal gain 10⁴ @ 1.4kV **PHQ9352** divider base with on board HV generation

5th dynode

ELMHOLTZ GEMEINSCHAFT

Readout

trigger board with clipped-sum-trigger

DRS4 based sampling

1 GS/s sampling

currently Evaluation Board V3

Further component alternatives & developments

MSU

- trigger boards (DRS4 based in prep.)
- PMT & divider bases

ISU

box mechanics

Physics potential of HiSCORE

(gamma-ray astronomy)

Opening the Pevatron range

Opening the Pevatron range

Opening the Pevatron range

HiSCORE current status and plans

Helmholtz Russia Joint Research Group HRJRG

- U. Hamburg
- KIT
- Desy Zeuthen
- INR Moscow
- MSU Moscow
- ISU Irkutsk

First HiSCORE prototype deployed

Universität Hamburg

Helmholtz Alliance for Astroparticle Physics HiSCORE @ PAO

rayk.nachtigall@uni-hamburg.de

HiSCORE goals:

- Ultra-high energy gamma-ray observation window
- Cosmic ray physics from 100 TeV to 1 EeV

Summary & outlook

Particle physics beyond LHC energy range

Activities:

- 3 stations since April 2012
- small array @ PAO 2013/14

Engineering array (1 km²), HiSCORE-EA:

- Start 2013
- Potential for 1st physics results

Thank you!

Backup slides

Tunka site exposure map

Field of view: π steradian

Tunka site exposure map

First H.E.S.S. Galactic plane scan Field of view: π steradian

Reconstruction

- Extract PMT signal parameters
- Preliminary shower core position (cog)
- Preliminary direction (time plane fit)
- Improved core position: light distribution function (LDF) fitting
- Improved direction: arrival time model

Direction reconstruction

>3 stations: model fit adapted from Stamatescu et al. 2008,

Parametrization of time-delay *dt* at detector position

$$dt(k,z) = \frac{1}{c} \left(\sqrt{k} - \frac{z}{\cos(\theta)} + \frac{8.0}{z} \sqrt{k} \eta_0 \left(1 - \exp\left(\frac{-z}{8.0}\right) \right) \right)$$
$$k(r,z) = r^2 + z^2 \frac{1}{\cos(\theta)^2} + 2rz \tan(\theta) \cos(\delta)$$

$$\delta = \phi + \operatorname{atan2}\left((x_{Det} - x_{core}), (y_{Det} - y_{core})\right)$$

"17

light path I

detector

height z

PD

dh

Р

Universität Hamburg

point of emission

shower axis

core

position

DER FORSCHUNG | DER LEHRE | DER BILDUNG

Direction reconstruction

Parametrization of time-delay dt at detector position

Direction reconstruction

Particle energy: Q220 = Value of LDF at 220m

Particle energy: Q220 = Value of LDF at 220m

Cosmic rays

Shower depth reconstruction

Time model method: one free parameter in arrival time model

LDF method: Depth from LDF slope, Q50/Q220

Width method: Depth from signal width

Depth of shower maximum

Shower depth bias

Θ 20 10 ΔX [g/cm²] 0 Timing method -10 -20 -30 gammas protons × iron nuclei o -40 -50 160 Θ 140 120 100 Ó ΔX [g/cm²] Θ 80 0 0 Θ 0 0 60 LDF method 40 20 0 -20 -40 140 120 0 0 100 o 80 O. o ΔX [g/cm²] 0 0 60 Width method 40 20 0 -20 -40 10^{2} 10³ 10⁴ MC energy [TeV] GEMEINSCHAFT

30

Systematic bias

- LDF & widths : sensitive to whole shower Large overestimation for heavy particles (long tails)
- <u>Timing</u>: sensitive to specific point (edge time)
 Small overestimation for heavy particles

Particle separation

Particle separation (1)

Particle separation (2)

Particle separation (3)

Lateral Cherenkov Photon Distribution

Lateral Cherenkov Photon Distribution

Lateral Cherenkov Photon Distribution

"Measurements of Gamma Rays and Charged Cosmic Rays in the Tunka-Valley in Siberia by Innovative New Technologies"

04/2012 - 04/2015

- G. Rubtsov, I. Tkatchev (INR)
- A. Konstantinov, L. Kuzmichev (MSU)
- R. Vasilyev, N. Budnev (ISU)
- R. Wischnewski, C. Spiering (DESY)
- F. Schröder, A. Haungs (KIT)
- M. Tluczykont, D. Horns (U. Hamburg)

HiSCORE and Radio detectors @ Tunka

Innovation Proof-of-principle Synergies

Helmholtz Russia Joint Research Group HRJRG

 X_{max} resolution< 25 g·cm⁻²

References

- [HS1] M. Tluczykont, D. Hampf, D. Horns, et al. (2011), Adv. Sp. Res. 48, 1935
- [HS2] D. Hampf (2012), PhD thesis, University of Hamburg
- [HS3] M. Tluczykont, T. Kneiske, D. Hampf & D. Horns (2009), Proc. of the ICRC 2009, arXiv e-print (arXiv:0909.0445v1)
- [HS4] D. Hampf, M. Tluczykont & D. Horns (2009), Proc. of the ICRC 2009, arXiv e-print (arXiv:0909.0663v1)
- [HS5] M. Tluczykont, D. Hampf, D. Horns, et al., HiSCORE, in prep.
- [HS6] D. Hampf, M. Tluczykont, D. Horns, HiSCORE reco, in prep.

[Tunka133] Berezhnev S F, Besson D, Korobchenko A V et al. 2012 The Tunka-133 EAS Cherenkov light array: status of 2011 NIM A DOI : 10.1016/j.nima.2011.12.091 Preprint astro-ph.HE/1201.2122

- [Hec1998] D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, and T. Thouw, Report FZKA 6019 (1998), http://www-ik.fzk.de/~heck/publications
- [Ber2008] K. Bernlöhr (2008), astrop-ph preprint, arXiv:0808.2253
- [Hen1994] V. Henke (1994), Diploma thesis, University of Hamburg
- [Hör2003] J.R. Hörandel, Astropart. Phys., 19, 193 (2003)
- [Abd2007] Abdo A A, Allen B, Berley D et al. 2007 Astrophys. J. 658 L33–L36

