New method of air shower observations with CROME HAP Workshop, Advanced Technologies, KIT 2013

Sebastian Mathys for the CROME collaboration

Bergische Universität Wuppertal

25.01.2013

Introduction	Experiment	Results 00000	Summary and Outlook
Overview			

Introduction

- Theory
- CROME Cosmic-Ray Observation via Microwave Emission

2 Experiment

- Antennas
- Read out chain
- Data acquisition
- Calibration

Summary and Outlook

- Electromagnetical radiation, emission in the microwave spectrum
- Theoretical concepts: molecular bremsstrahlung (Gorham), Cherenkov radiation
- Transient: short-lived burst, \sim ns, shape not predictable
- Comparable air shower: $\sim 10^{17} 10^{18}\, \text{eV}$
- Experiments (MIDAS, AMBER, CROME, EASIER; AMY, MAYBE) try to verify these results

Introduction	Experiment	Results	Summary and Outlook

CROME at KASCADE-Grande

- Located in the KASCADE-Grande (KG) array
- Air shower energy: $10^{15.5} 10^{18} \text{ eV}$
- Reconstruction uncertainties:

arrival direction: 0.8° core position: 6 m energy: 20 %

- Triggering condition: 12 out of 12 nearby located KG-stations
- EAS-candidate selection via KASCADE-Grande reconstruction
- 800 trigger per day, 3 events per day reconstructed for E>10¹⁷ eV and ⊖<40°.

\sim · ·			
000	0000000000	00000	
Introduction	Experiment	Results	Summary and Outlook

Introd	uction

Experiment

Results

Summary and Outlook

L band radio antenna: first version

- Small Radio Telescope parabolic antenna
- D = 230 cm, F = 85.7 cm
- Beam width: 7°
- 360° az. and 90° el. rotatable
- Steering and supervision: Java-based program
 - Functions: 25 point scan, drift scan, tracking
 - Automatical computation of several astronomical objects

Introduction

Experiment

Results

Summary and Outlook

C band radio antenna

Camera:

- 3×9 linearly polarized feedhorns, single and dual
- Current setup:

35 C band channels 8 dual polarized receivers 10 EW only, 9 NS only Dish:

- Commercial available parabolic reflector
- D = 335 cm, F = 119 cm
- Gain: 40 dBi, HPBW = 1.6°
- Currently also used for the L band antenna

64 dB amplification input frequency: 3400 MHz-4200 MHz output frequency: 950 MHz-1750 MHz

6 dB attenuator:

suppress reflections due to impedance mismatching

• High pass filter 1.2 – 1.8 GHz: suppress airplane altimeter radars (4.3 GHz)

Time [ns]

000	Experiment	00000	Summary and Outlook
PicoScope a	nd GPS satellite r	eceiver	

PicoScope:

- PicoScope 6402 and 6403 USB Oscilloscopes
- 4 channels, 8 bits vertical resolution
- 250 MHz (350 MHz) bandwidth
- Rise time 1.4 ns (1.0 ns)
- 200 ps time resolution
- 5 GS/s real-time sampling (1 channel single shot, 1.25 GS/s when 3 or 4 channel in use)
- Input sensitivity: 10 mV/div
- Integrated function generator and spectrum analyzer

000		00000	Summary and Outlook
PicoScope and	d GPS satellite	e receiver	

PicoScope:

- PicoScope 6402 and 6403 USB Oscilloscopes
- 4 channels, 8 bits vertical resolution
- 250 MHz (350 MHz) bandwidth
- Rise time 1.4 ns (1.0 ns)
- 200 ps time resolution
- 5 GS/s real-time sampling (1 channel single shot, 1.25 GS/s when 3 or 4 channel in use)
- Input sensitivity: 10 mV/div
- Integrated function generator and spectrum analyzer

GPS clock:

- Meinberg GPS167 Satellite Receiver for high precision timing information
- Buffer for 500 events or continuous stream of asynchronous time events

Introduction 000	Experiment	Results 00000	Summary and Outlook
Read out chain:	L band		

- $\bullet~$ LNA: 1200 $-1700~\text{MHz},~\sim~30~\text{dB}$
- Notch filter: 916 –964 MHz, 1805 –1880 MHz, ~ -50 dB
- Band-pass filter: 1050 1750 MHz
- Power-Log detector: 0 —8 GHz, rise: 4 ns, fall: 4 ns (modified)

Introduction 000	Experiment	Results 00000	Summary and Outlook
Data acquisition	L band		

- VME Crate with 2 modules, SIS3150 and SIS3320 (SIS3300 also used, extendable up to 7 modules)
- Communication via SIS3150-USB (USB 2.0 possible)
- External hardware trigger: KASCADE-Grande
- Time calibration via digitalisation of KG-Station 19
- C based read out program, fully customizable
- Data amount: roughly 1 GB/day

Introd	uction

Experiment

Results

Struck SIS3320

(www.struck.de)

- 8 channel 12 bit FADC VME card
- Sampling rate: 40 MHz-250 MHz per channel
- 32 MSamples/channel memory
- 100 MHz bandwidth
- Offset DACs
- Internal/External clock
- Simultaneous read out and acquisition possible
- In field JTAG and VME firmware upgrade capability

- Multi event mode: memory subdivided in variable number of parts \rightarrow acquisition of events with a high trigger rate more efficient
- Single event: contiguous memory for more data samples
- Post triggering: trigger time unknown \rightarrow half of the traces stored before and after the trigger, no data is lost
- Continuously 250 MHz sampling
- ullet 262144 data samples per trace, $\sim 1\,{
 m ms}$
- Parallel use of additional SIS3300 cards (100 MHz)

Introduction	Experiment ○○○○○○○○●○	Results 00000	Summary and Outlook
C band cal	ibration		
			_
	A. Contractor	LNB Feed	Absorber Vacuum

• Calibrated microwave emitter (voltage controlled oscillator) with different modes (continuous wave, triggered pulse and triggered sweep)

520 265

- Octocopter: electronically stabilised, programmable flight path, radio link to a computer
- Microwave absorbing foam at room 293 K and liquid nitrogen 77 K temperature in a shielded vessel

cu

. ≻LN2

200

Introduction	Experiment	Results	Summary and Outlook
000	○○○○○○○○○●	00000	
L band: 2D sun	scan		

- $\bullet\,$ Grid with spacing of $1^\circ\,$ around expected sun position
- \sim 3.5 dBm enhanced signal level compared to cold sky (\sim -57 dBm)

 $E_{000} = 2 \times 10^{17} \text{ eV}, R_{C} = 120 \text{ m}, \Theta = 7^{\circ}$

• Short pulse with 10 ns order of magnitude visible in the C band

Introduction Experiment Results Summary and Outlook

 $E_0 = 5 \times 10^{17} \text{ eV}, R_C = 98 \text{ m}, \Theta = 5^{\circ}$

IntroductionExperimentResultsSummary and OutlookcoolcoolcoolcoolcoolEvent example:18.12.2011 - L band trace

- Expected signal: t \sim 650 460 ns
- Signal above the noise level also seen in L band

Introduction Experiment Results Summary and Outlook

- 80000 entries, only 5 with higher signal
- Peak value is 3.78 σ off the mean value (single bin probability)

Introduction	Experiment	Results ○○○○●	Summary and Outlook
CoRFAS			

- MC Simulation of radio emission from MHz up to GHz frequencies
- Implemented the endpoint formalism directly in CORSIKA, no histogramming needed anymore
- Broken ring structure on ground
- 20 measured events with core distances between 80 m and 150 m
- Ring structure \rightarrow Cherenkov cone?

Iron primary Total field strength 140 200 120 100 100 field strength [muV/m] 80 north [m] 0 60 -100 40 20 -200 0 -200 -100 0 100 200 east [m] (F. Werner, ARENA2012)

Introduction	Experiment	Results	Summary and Outlook
Summary a	nd Outlook		

- Presentation of the CROME experiment
- Description of the signal chain and the DAQ of the L and C band antennas
- Calibration methods to estimate system temperatures
- CROME has measured 20 events (C band) within 356 days since May 2011 but the analysis is still ongoing
- First event candidate with a visible signal above the noise level coincident measured in the L band

Introduction	Experiment	Results 00000	Summary and Outlook
Summary and (Dutlook		

- Presentation of the CROME experiment
- Description of the signal chain and the DAQ of the L and C band antennas
- Calibration methods to estimate system temperatures
- CROME has measured 20 events (C band) within 356 days since May 2011 but the analysis is still ongoing
- First event candidate with a visible signal above the noise level coincident measured in the L band
- KASCADE-Grande has been shut down on Nov. 5, 2012, no new data at the moment
- Absolute calibration of the receiving system and estimation of the expected sensitivity level with octocopter flights (L band)
- Polarisation studies (C band)

Experiment

Results

Summary and Outlook

Thanks for your attention!

Sebastian Mathys, Bergische Universität Wuppertal