#### Interpretations of the XENON1T excess

#### Felix Kahlhoefer 7. KAT-Strategietreffen, online 4 December 2020

Including results from **arXiv:2006.11243** and **arXiv:2007.05517** in collaboration with Gonzalo Alonso-Álvarez, Peter Athron, Csaba Balázs, Ankit Beniwal, Eliel Camargo-Molina, Fatih Ertas, Andrew Fowlie, Tomás Gonzalo, Sebastian Hoof, Joerg Jaeckel, Doddy Marsh, Markus Prim, Pat Scott, Wei Su, Lennert Thormaehlen, Martin White, Lei Wu and Yang Zhang



# **Electronic recoil events in XENON1T**

 The XENON Collaboration has recently announced an excess in electronic recoil events with energy in the range 1-7 keV over known backgrounds

arXiv:2006.09721

 For several different signal hypotheses the significance is >3σ





• A more conventional explanation of the signal is that it is due to an unaccounted tritium component







# **Electronic recoil events in XENON1T**





Interpretations of the XENON1T excess Felix Kahlhoefer | 4 December 2020





#### **Overview of possible interpretations**

#### **Production mechanism**

|                                                      | Particles from the local DM density                                            | Particles produced in the Sun                                    | Particles accelerated<br>in astrophysical<br>processes                  |
|------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Elastic scattering on electrons                      | <i>No good fit to data</i> arXiv:2006.14521                                    | Neutrinos with non-<br>standard interactions<br>arXiv:2006.11250 | Boosted dark matter<br>arXiv:2006.10735                                 |
| Absorption<br>(photoelectric effect)                 | Axion-like particles<br>arXiv:2006.10035<br>Hidden photons<br>arXiv:2006.11243 | QCD axions<br>arXiv:2006.12487                                   | Products of dark<br>matter annihilation or<br>decay<br>arXiv:2006.12488 |
| Inelastic scattering,<br>nuclear scattering,<br>etc. | Exothermic DM<br>arXiv:2006.13918<br>Luminous DM<br>arXiv:2006.12461           | Unnecessarily complicated                                        |                                                                         |







#### **Overview of possible interpretations**

#### **Production mechanism**

|                                                      | Particles from the local DM density                                            | Particles produced in the Sun                                    | Particles accelerated<br>in astrophysical<br>processes                  |
|------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------|
| Elastic scattering on electrons                      | <i>No good fit to data</i> arXiv:2006.14521                                    | Neutrinos with non-<br>standard interactions<br>arXiv:2006.11250 | Boosted dark matter<br>arXiv:2006.10735                                 |
| Absorption<br>(photoelectric effect)                 | Axion-like particles<br>arXiv:2006.10035<br>Hidden photons<br>arXiv:2006.11243 | QCD axions<br>arXiv:2006.12487                                   | Products of dark<br>matter annihilation or<br>decay<br>arXiv:2006.12488 |
| Inelastic scattering,<br>nuclear scattering,<br>etc. | Exothermic DM<br>arXiv:2006.13918<br>Luminous DM<br>arXiv:2006.12461           | Unnecessarily complicated                                        |                                                                         |







#### Particles produced in the Sun

- Both solar axions and solar neutrinos give a good fit to the XENON1T excess
- Example: Solar axions have  $\Delta \chi^2 = 14.7$  with 3 degrees of freedom
- The shape of the signal is largely dictated by the temperature of the Sun
- Few fit parameters + no look-elsewhere-effect  $\rightarrow$  strong signal preference







# **Constraints from stellar cooling**

- Particles produced in the Sun can also be produced in other astrophysical systems
- Such particle production increases the energy losses and enhances stellar cooling in
  - White dwarfs (WD)
  - Red giants (RGB)
  - Horizontal branch stars (HB)
- As a result, many models are in strong tension with astrophysical constraints
- In particular the solar axions interpretation of XENON1T is robustly excluded









# Alternative: Non-relativistic scatters

- Can the XENON1T excess also be explained in terms of non-relativistic particles that are gravitationally bound to the Milky Way and contribute to the local DM density?
- Elastic DM-electron scattering does not give a good fit to data (even for momentum-dependent interactions)
   Bloch et al., arXiv:2006.14521
- Possible alternative: DM particles "store" energy, which they release in the detector
  - Exothermic DM (X\* + e-  $\rightarrow$  X + e-)

Baryakhtar et al., arXiv:2006.13918

− Luminous DM (X\*  $\rightarrow$  X + γ)

Bell et al., arXiv:2006.12461

• Requires a slightly heavier state, which is populated either in the early universe or through up-scattering

Aboubrahim et al., arXiv:2011.08053 Eby et al., arXiv:1904.09994







#### Possible explanation: Dark matter absorption

- A much simpler possibility is that the XENON1T signal is due to the absorption of keV-scale bosonic DM particles
- Two well-motivated candidates:
  - Axion-like particles that couple dominantly to electrons
  - Dark (or hidden) photons that mix with the visible photon
- These particles can be produced in the early Universe via the misalignment mechanism and potentially constitute all of DM









# Dark matter absorption in XENON1T

- The expected signal in XENON1T is then an electron recoil with energy equal to the rest mass of the DM particle
- Due to the finite energy resolution of the detector, this signal ends up giving a good fit to the observed data



 Since the signal does not rely on particle production in the Sun, astrophysical constraints can be satisfied





## Stellar cooling hints

- However, astrophysical observations not only provide bounds on new particles beyond the Standard Model, but also some hints for anomalous cooling mechanisms
  - The R parameter ( $R = N_{HB} / N_{RGB}$ ) is observed to be slightly smaller than expected, leading to a small preference for additional cooling contributions

Giannotti et al., arXiv:1512.08108

The observed cooling rates of WDs (measured via the increase in the pulsation period) is significantly larger than expected, consistent with the production of exotic particles coupling to electrons











# XENON1T and stellar cooling: Hidden photons

- For m ~ 2 keV the hidden photon mass is comparable to the plasma frequency in the cores of HB stars and the production of hidden photons is resonantly enhanced
- The mass and coupling strength required to fit the XENON1T signal predict a nonnegligible contribution to the cooling rates of HB stars
- Hidden photons constituting all of DM can potentially account for both the XENON1T excess and the HB Anomaly
- Negligible contribution to WD cooling

Alonso-Álvarez, FK et al., arXiv:2006.11243



12





An et al., arXiv:1412.8378

## XENON1T and stellar cooling: ALPs

 The electron coupling inferred from the XENON1T excess is too small for ALPs to contribute significantly to stellar cooling rates and astrophysical constraints are easily satisfied

#### Takahashi et al., arXiv:2006.10035

- However, if ALPs are assumed to constitute only a fraction η of the local DM density, larger couplings are necessary to explain the XENON1T excess
- For η < 20% the ALP-electron coupling is large enough to contribute to the WD cooling rates
- In this case it is possible to simultaneously fit XENON1T and the WD cooling hints

Athron, FK, et al., arXiv:2007.05517









#### XENON1T and stellar cooling: Combined fit



|                                       | XENON1T                | XENON1T +<br>R parameter | XENON1T +<br>R parameter +<br>WD cooling hints |
|---------------------------------------|------------------------|--------------------------|------------------------------------------------|
| Axion-like particles                  | $\Delta \chi^2 = 16.8$ | $\Delta \chi^2 = 17.7$   | $\Delta \chi^2 = 23.1$                         |
| Axion-like particles + <sup>3</sup> H | $\Delta \chi^2 = 8.6$  | $\Delta \chi^2 = 9.4$    | $\Delta \chi^2 = 15.0$                         |







# How strong is the evidence for ALPs?

- Local  $\Delta \chi^2$  values are difficult to interpret in terms of *p*-values for the ALP hypothesis
- To understand whether the ALP model is preferred over the background hypothesis, it is useful to calculate **Bayesian evidences**

$$\mathcal{Z}(\mathcal{M}) \equiv \int \mathcal{L}(D|\theta) P(\theta) \, d\theta$$
  
Likelihood of data *D* given parameter  $\theta$ 

- If the data *D* is in good agreement with the typical expectation for model *M*, the evidence will be large, otherwise it will be reduced
- We can then calculate the **Bayes factor** between two different models  $M_1$  and  $M_2$ :



# **Results from Bayesian analysis**

- Bayesian approach includes an automatic
  Occam penalty, i.e. a model is penalised for making very unspecific predictions (regarding the magnitude or location of a signal)
- As a result we find Bayes factor of order unity, i.e. no clear evidence for the ALP model
- When including a tritium background the ALP model is in fact *disfavoured*
- Different prior choices (in particular smaller coupling ranges) can enhance the Bayes factor, leading to a *small preference* for ALPs



• Bottom line: ALPs can fit the XENON1T signal, but they certainly did not predict it!







#### Outlook

- If the excess is confirmed by future direct detection experiments, it will be essential to measure its time dependence
- In contrast to DM scattering, the absorption of bosonic DM does not exhibit an annual modulation
- However, models of hidden photons and axion-like particles predict large inhomogeneities on small scales (such as axion mini-clusters)
- Expect substantial boosts of the event rate for a few seconds when a substructure crosses the detector







#### Conclusions

- There are many ways to interpret the XENON1T excess in terms of new physics
- Particularly interesting is the possibility that XENON1T sees the absorption of bosonic particles from the local DM density
- Axion-like particles and hidden photons are well-motivated and cosmologically viable models that give a good fit to data and satisfy astrophysical constraints
- Moreover, both types of particles can give a relevant contribution to stellar cooling rates and account for small differences between predictions and observations
- Although the local preference for these models is quite large, there's no preference for them from a Bayesian point of view because of their unspecific predictions
- The next few years will be very exciting for direct detection experiments!



