
Abstract

Peano is a framework for large-scale simulations using dynamically adaptive Cartesian
grids. It is used today for Earthquake and Black Hole simulations, for example. The fourth
generation of the software is currently under development.
Peano’s development as well as the push behind ExaHyPE, a solver engine built upon
Peano, always has been shaped by the ambition to implement state-of-the-art numerics.
In our field, this implies multiscale algorithms where others work with ”flat” data
structures, dynamically changing data structures where others rely on something static,
writing multi-numerics/multi-physics codes where others focus on one thing, supporting
hybrid architectures where others commit either to GPGPU- or CPU-only, and so forth.
In this talk I briefly categorise the software and present application areas. After that, I
focus on the software’s genesis. Peano has started off as a collection of codes for solving
incompressible fluids, yet spread out into many application areas, it has been shaped
(and misshaped) by dozens of core developers, and it has grown repeatedly into a state
that made it hard to maintain and extend further. Therefore, each generation has become
a complete rewrite—also as we tried to bring in new, fancy numerics every time.
I will explain which software design patterns we use today in our framework in an attempt
to deliver software that is fast, maintainable and usable for all the different communities
involved. With our complex agenda, it is basically impossible to find developers among
PhDs, academics or RSEs that master all areas of relevance. So we need a strict
separation of concerns (and flaws) which materialises in our code as the Hollywood
Principle: Don’t call us, we call you. In short, we take a lot of freedom away from
developers how they can realise things. Instead, we force them to focus on what they
want to do.

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 1 / 28

My project expired and my team left, so let’s
rewrite all the software from scratch
SORSE
T. Weinzierl

January 2021

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 1 / 28

Vision: Allow groups with decent computational background to
write an exascale solver for

M
∂

∂t
Q +∇ · F(Q) +

∑
i

Bi
∂Q
∂xi

= S +
∑

δ

within a year.

ExaHyPE’s software roadmap:
I Users decide what to solve (PDE terms)
I Engine decides how to solve it (algorithmic building blocks)
I Runtime decides where and when (scheduling)

⇒ It is an engine that you tailor towards your application∗

∗ as long as it is a first-order hyperbolic system of PDEs.

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 2 / 28

The look-n-feel metaphor for plots

PETSc
Jacobi

BoxMG
Jacobi

PETSc
GAMG

BoxMG
V22

BoxMG
V22

FMG-type

PETSc
GAMG
1 cycle

BoxMG
V22

1 cycle

10 7

10 6

10 5

10 4

10 3

10 2

tim
e/

un
kn

ow
n

= (0, 1)2, hmin = 3 6

create grid & init (multiscale) operators
create grid
enumerate & init datastructures
assemble
solve
plot & smooth
plot

16 64 256 1024
cores

107

108

109

#
p
a
rt

ic
le

s/
s

Polaris, 2d, ppc=100, with flops

#particles=1.0e+07

#particles=1.0e+08

#particles=1.0e+09

1 2 3 6 12 24 48

1

2

3

6

12

24

48

Cores

S
p
ee
d
u
p

p = 3, priorities
p = 5, priorities
p = 7, priorities
p = 3, pfors
linear

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8 16

1 2 4

1 3 5 1 3 5

1 3 5

0.1

1.0

10.0

0.1

1.0

10.0

nnodes

tim
e

conf

●

●

●

log_mpi_cpp

log_mpi_defomp

log_mpi_lrdomp

Peano4 timestep OMP (Task_layered) and mpi on DINE

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

8 16

1 2 4

1 3 5 1 3 5

1 3 5

0.1

1.0

10.0

0.1

1.0

10.0

nnodes

tim
e

conf

●

●

●

log_mpi_cpp

log_mpi_defomp

log_mpi_lrdomp

Peano4 timestep OMP (Task_layered) and mpi on DINE

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 3 / 28

Look-n-feel for a compute engine

It is not about the visuals (Paraview/TecPlot), it is about
I ADER-DG plus Finite Volumes
I Spacetrees with three-partitioning
I Intel-specific kernels tailored towards seismic applications (and some astro, too)

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 4 / 28

A PDE solver engine alike a game engine

Generic problem formulation:

M
∂

∂t
Q +∇ · F(Q) +

∑
i

Bi
∂Q
∂xi

= S +
∑

δ

Usage:
1. Write a Python specification script

I Order p ∈ {2, 3, . . . , 9} in space and time or patch-sizes
I Flavour of solver
I Plotting intervals and domain sizes

2. Generator yields stand-alone C++ simulation code
3. Implement physics, not numerics (generated C++ classes/SymPy/pre-manufactured)

4. Type in make

Implications:
⇒ User focuses on PDE terms, boundary conditions, adaptivity control, . . .
⇒ Engine fixes and provides the compute-n-feel (CS+Math)

g i t c lone −b p4
l i b t o o l i z e ; ac loca l ; autoconf ; autoheader ; cp src / con f i g . h . i n . ; automake −−add−missing
. / con f igu re −−enable −exahype −−enable − loadbalancing − too lbox
make
cd examples / exahype2 / eu le r
j upy te r −notebook Euler . ipynb

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 5 / 28

The Euler equations

p r o j e c t = exahype2 . P ro jec t ([” examples ” , ” exahype2 ” , ” eu le r ”] , ” f i n i t e v o l u m e s ” , ” . ”)
p r o j e c t . add so lver (exahype2 . so l ve rs . f v . GenericRusanovFixedTimeStepSize (

” Euler ” , pa tch s ize , unknowns , aux values , min h , max h , t i m e s t e p s i z e))
bui ld mode = peano4 . output . CompileMode . Release
p r o j e c t . se t g l oba l s imu la t i on pa rame te r s (
dimensions , [0 . 0 , 0 . 0 , 0 . 0] , [1 . 0 , 1 . 0 , 1 . 0] ,
end time , f i r s t s n a p s h o t , p l o t i n t e r v a l)

p r o j e c t . se t l oad ba lanc ing (” too lbox : : loadba lanc ing : : Recurs iveSubdiv is ion ”)
p r o j e c t . s e t P e a n o 4 i n s t a l l a t i o n (” . . / . . / . . ” , bui ld mode)
peano4 pro ject = p r o j e c t . generate Peano4 pro ject ()
peano4 pro ject . ou tput . makef i le . pa rse con f i gu re sc r i p t ou tcome (” . . / . . / . . ”)
peano4 pro ject . generate ()

double examples : : exahype2 : : eu le r : : Euler : : maxEigenvalue (. . .) {
constexpr double gamma = 1 . 4 ;
const double i r h o = 1 . /Q[0] ;
i f Dimensions==3
const double p = (gamma−1) * (Q[4] − 0 .5* i r h o * (Q[1] *Q[1] +Q[2] *Q[2] +Q[3] *Q [3])) ;
#e lse
const double p = (gamma−1) * (Q[4] − 0 .5* i r h o * (Q[1] *Q[1] +Q[2] *Q [2])) ;
end i f
const double u n = Q[normal + 1] * i r h o ;
const double c = std : : s q r t (gamma * p * i r h o) ;
r e t u r n s td : : max(s td : : abs (u n−c) , s td : : abs (u n+c)) ;

}

vo id examples : : exahype2 : : eu le r : : Euler : : f l u x (. . .) {
. . .
}

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 6 / 28

This talk’s subject: How did we get there?
(and does this idea with the engine work out)

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 7 / 28

Outline

ExaHyPE’s vision

Peano (first generation)

Second try: One Peano (to rule them all)

It is an ExaHyPE (with Peano 3)

Peano’s 4th Generation

Conclusion

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 8 / 28

Cache-aware algorithms

2.
3

G
B

yt
e/

co
re

332 GByte/s (w/o multiply/add)
2x14 cores

343 GByte/s

92 GByte/s

39 GByte/s/core

6.7 GByte/s/core

SuperMUC Phase 2

Memory accesses become performance-
critical
I widening compute-memory gap
I energy requirements

⇒ caches ride to rescue

Cache optimisation techniques
I Spatial data reuse

(stencil fusion)

I Temporal data reuse
(multiple iterations)

I Blocking

⇒ difficult for changing, irregular data
(AMR)

Bio: Pre-2005; worked on this as student research assistant to support PhD student in RSE role

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 9 / 28

Spacetree grids

Team:
I Work driven by Christoph Zenger
I MSc@TUM
I Three PhD students and 9+ MSc

theses

Classics:
I Generalisation of quadtrees/octrees
I Facilitate dynamic AMR
I Span multiscale mesh
I Tensor-product style

New idea:
I Linearise via SFCs
I Store data on stacks

more on this in a second

⇒ Intrinsic cache-oblivious

(*) M. Mehl, T. Weinzierl, Ch. Zenger: A cache-oblivious self-adaptive full multigrid method. Numerical Linear

Algebra with Applications, 13(2–3), pp. 275–291 (2006)

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 10 / 28

There’s no first generation of Peano

Achievements #1
I Numerous MSc dissertations

parallelisation, lb, CFD, multigrid, d ≥ 4, . . .

I Three PhD theses (2d, 3d, adaptivity criteria)
I One PostDoc/habilitation

Achievements #2
I A lot of publications
I Two DFG (German EPSRC) projects
I 2.5 PhD positions

Achievements #3
I Numerous code branches using different code bases

⇒ rather a code family

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 11 / 28

Outline

ExaHyPE’s vision

Peano (first generation)

Second try: One Peano (to rule them all)

It is an ExaHyPE (with Peano 3)

Peano’s 4th Generation

Conclusion

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 12 / 28

Algorithms that solve a relevant problem

Drift Ratchet

Driving force: CFD research projects
I Drift-ratchet

massive AMR with FSI

I DFG benchmark
dynamic AMR

Code base
I MSc students (almost) all left
I No PhD pursued academic career
I Forks’ code bases incompatible

Way out: PhD which is open-ended
I “just combine these features”

classic RSE task as a starter (*)

I rewrite from scratch
computer scientists like this anyway

I try not to make same error again
no code divergence

Bio: 2005–2009; worked as PhD student and had combined RSE+fundamental research role

(*) please see next slides

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 13 / 28

Why were branches incompatible?

Application

(applied)
Mathematics

Computer
Science

I Three different disciplines “overlap”
I Data organisation, movements, mathematical schemes, physical models, . . . all

overlap, too⇒ one big code mess (“the monster”)

#pragma omp p a r a l l e l / / how to schedule
f o r (i n t i =0; . . .) { / / how i s data organised

t a rch : : l a : : Vector<14,double> myX = / / what i s computed
}

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 14 / 28

Why was rewrite challenging?

I Code is dense (single sign change has long-term implications)
I Code is floating-point heavy
I Code is running on parallel computer (determinism)
I Code is tricky (core algorithm’s description approx. 40+ pages)

(and key graduate had left for high-profile industry job)

⇒ core algorithm+infrastructure took me 2+ years

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 15 / 28

The Hollywood principle

Hollywood principle: Don’t call us, we call you.

Fancy slogan for [GHJV94]’s
I Composite pattern plus
I Visitor pattern plus
I Parallel tree traversals

f o r (auto& c e l l : c e l l s I n T r e e) {
f o r (auto& faces : c e l l . facesUsedFirstTime ()) touchFacesFirstTime (p) ;
touchCe l lF i r s tT ime (p) ;
touchCel lLastTime (p) ;
f o r (auto& faces : c e l l . facesUsedLastTime ()) touchFacesLastTime (p) ;
}

Todos for domain expert (in classic frameworks):
I Translate into a BFS or DFS (and switch)
I Combine two traversals
I Run parts in parallel

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 16 / 28

Lessons learned

Achievements
I Delivered upon projects
I Graduated
I Some key papers formalise key concepts as pseudo code

(after three years)

⇒ will turn out as game changer

Issues
I Re-education does not go down well

“I want to solve it that way”

I People work around concept
I And the code quality wasn’t that great either . . .

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 17 / 28

Outline

ExaHyPE’s vision

Peano (first generation)

Second try: One Peano (to rule them all)

It is an ExaHyPE (with Peano 3)

Peano’s 4th Generation

Conclusion

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 18 / 28

ExaHyPE & multicores

Earthquake in the alps

Driving forces behind evolution
I Emancipate from application domain
I Separate maths and application
I Support manycores (KNL)

Code base
I Over-generalised callback interfaces
I Tons of fancy C++ code

(pattern pollution)

Agenda
I Rewrite key algorithms (clean-up)

(cmp. Fowler’s refactoring)

⇒ translate into manycore era
I Apply call-back idea once more

(layers)

⇒ separate maths–application
I Introduce heavy code generation

⇒ free developers from glue code burden
Bio: 2010–2019; PostDoc at TUM, Assistant Prof in Durham

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 19 / 28

A successful rewrite

I Software reuse did not work, as signatures changed
I Unit tests partially reused

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 20 / 28

A not so successful code generation

I Create new DSL to what algorithm steps do exist

⇒ generate all glue code for generic interfaces
I Create new DSL to specify data dependencies

⇒ extract code dependencies (concurrency)

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 21 / 28

Lessons learned

I Users don’t like signature changes
I Users don’t like a code generator that overwrites their manual “fixes” either
I Users still don’t like re-education
I Users tend to “fix” your code generator
I Users don’t know C++
I Users don’t like DSLs either

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 22 / 28

Outline

ExaHyPE’s vision

Peano (first generation)

Second try: One Peano (to rule them all)

It is an ExaHyPE (with Peano 3)

Peano’s 4th Generation

Conclusion

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 23 / 28

ExaClaw & GPUs

Earthquake in the alps

ExCALIBUR
I Connect to third-party libs (Fortran)
I Port parts of code to GPUs
I Improve all aspects of scalability

Code base
I Lead developer behind ExaHyPE left
I Exascale paradigms had changed

(KNLs vs GPGPUs)

Strategies
I Rewrite key algorithms (once more)

⇒ translate into accelerator era
I Rewrite code generators in Python

⇒ problem-specific call-backs
I Document key design decisions

formally

⇒ see TOMS and SISC tracks

Kick-off: 2019/2020 in Durham

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 24 / 28

Did it work?

Vision: Allow groups with decent computational background to
write an exascale solver for

M
∂

∂t
Q +∇ · F(Q) +

∑
i

Bi
∂Q
∂xi

= S +
∑

δ

within a year.

I I have to leave the assessment to you (please try it out)
I Benchmark (at the moment) is purely papers and grants and . . .
I This question/vision driven by applications is irrelevant to this talk

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 25 / 28

Outline

ExaHyPE’s vision

Peano (first generation)

Second try: One Peano (to rule them all)

It is an ExaHyPE (with Peano 3)

Peano’s 4th Generation

Conclusion

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 26 / 28

Software status-quo

I Still called Peano, as it is still relying on Peano’s SFC for spacetrees
I For users, it now has a Python-esque compute-n-feel (Jupyter notebooks)
I Under the hood, C++ and top-notch algorithms

don’t compete with NationalLabs in terms of maturity or diversity

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 27 / 28

Lessons learned/to be discussed

I Classic software engineering of limited help
I Pair programming
I Documentation (prose)
I Code reviews
⇒ lack of manpower (team overlap) plus qualification in all three areas
⇒ for PI, enabling features have higher priority

I Don’t branch
I Colleagues leave
I Work towards paper deadlines (quick n dirty fixes)
⇒ leads to “how to realise feature” schism
⇒ biased interpretation of agile methods and sprints

I Don’t use OO or Design Patterns
I Programming skills underdeveloped
I Pattern pollution due to fascination
I Interface overspecification
I Too slow, i.e. code rewrites might become mandatory
⇒ document patterns explicitly and minimise their use
⇒ Python-based code generation maybe better (DSLs)
⇒ please challenge mainstream notions of code quality

I Formalise
I Algorithm papers help more than open source
⇒ Let people reimplement rather than reuse
I Formalisation of constraints, data structures, assertions, preconditions, . . . helps
⇒ At least as important as unit tests, e.g.

I Re-educate

@hpcsoftware Tobias Weinzierl: ExaHyPE journey 28 / 28

	ExaHyPE's vision
	Peano (first generation)
	Second try: One Peano (to rule them all)
	It is an ExaHyPE (with Peano 3)
	Peano's 4th Generation
	Conclusion

