
https://root.cern

Modern distributed analysis with ROOT

https://root.cern

Distributed ROOT with Spark

2

● Targets final analysis with a high turnaround
cycle (~ 30 min)
● Making final selections, histograms,

repeating the same analysis while
tweaking the parameters.

● Aggregation of the results directly in the
application

● Focus on scale out with minimal latency
● Scale out the application instantly on a

cluster
● Get the aggregated results right back in

the application with minimal latency
● Supports interactive analysis and

minimizes the turnaround cycle

●
●

●
○
○

First results on KIT cluster

3

●
●

1 node

2 nodes

3 nodes

4 nodes

HSF-WLCG workshop talk

http://opendata.web.cern.ch/record/12342
https://indico.cern.ch/event/941278/contributions/4084839/

Coordination requirements

In order to create a coordinated system between the traditional batch scheduler and Spark, the
following requirements should be satisfied:

● Retrieve cores/memory unused by the batch system and direct them towards the Spark backend
● Allow multiple users to have access to the same resources before scaling out to other cores of the

cluster
● Be able to spawn a Spark “node” with variable cpu/memory quota

● Spawn multiple “node” objects on the same machine (Spark standalone way)
● Have a daemon always running that can change dynamically cpu/memory (YARN way)

● Guarantee application isolation for authentication purposes:
● Run as the submitting user, with their credentials and don’t interfere with other users

● Ensure FAIR scheduling between applications on the Spark cluster

4

Spark cluster setup: Standalone

Create the software stack: install Spark with only requirements Java and Python

Define the required environment variables
export SPARK_WORKER_DIR=/path/to/work/dir
export SPARK_LOG_DIR=/path/to/log/dir

export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH
export PYTHONPATH=$SPARK_HOME/python:$PYTHONPATH

Spawn the master
start-master.sh

Spawn the workers (on any machine in the network)
start-slave.sh spark://<hostname or ip of the master>:7077

5

● Minimal dependencies
● Simple setup
● Weak support for multi-user scenario

● No fair scheduling
● No dynamic scaling of available

resources
● No native integration with

authentication tools

Spark cluster setup: YARN

Create the software stack (Java and Python required):
Download Hadoop, Spark (must be compatible versions)

Define the required environment variables
export HADOOP_HOME=/path/to/hadoop/dir
export SPARK_HOME=/path/to/spark/dir
export JAVA_HOME=/path/to/java/dir

export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
export PYTHONPATH=$SPARK_HOME/python:$PYTHONPATH

Spawn the YARN resourcemanager (RM)
yarn resourcemanager

Spawn the YARN nodemanagers (on any machine in the network)
yarn nodemanager # the RM IP is written in the config file

6

● Slightly more dependencies
● Setup becomes more complicated

and multiple configuration files need
to be tweaked

● Strong support for multiple users
● Fair scheduling natively
● NM quota can be changed

dynamically through REST API
● Kerberos integration

COBalD/TARDIS + YARN/SPARK

● Through YARN we can scale Spark cluster resources
up/down through a full REST api

● How do we coordinate between YARN and
COBalD/TARDIS?
● Full resources utilisation: fire up Spark workers when needed and give

idle resources to HTCondor
● Interactive analysis as first class citizen on some nodes

7

8

YARN REST API

9

import requests
import json

ResourceManager URL
rm_url = “http://hostname:port”
Nodes of the cluster
nodes_path = rm_url + “/ws/v1/cluster/nodes”

Retrieve resources of a certain node
node_url = nodes_path + NODE_ID
resources = requests.get(node_url).json()[“node”][“totalResource”]

Set new quotas
payload = {"resource": {"memory": MEMORY, "vCores": CORES}, "overCommitTimeout": -1}
requests.post(node_url + “/resource”, json=payload)

Distributed analysis with RDataFrame

import ROOT
import PyRDF # Development module for distributed RDataFrame

PyRDF.use('spark', conf={
 'spark.master': 'spark://sg01:7077',
 'spark.app.name': 'Dimuon spectrum',
})

df = PyRDF.RDataFrame('Events',
 'root://eospublic.cern.ch//eos/opendata/cms/derived-data/' +
 'AOD2NanoAODOutreachTool/Run2012BC_DoubleMuParked_Muons.root')

h = df.Filter('nMuon == 2')
 .Filter('Muon_charge[0] != Muon_charge[1]')
 .Define('Dimuon_mass',
 'ROOT::VecOps::InvariantMass(Muon_pt, Muon_eta, Muon_phi, Muon_mass)')
 .Histo1D(ROOT.RDF.TH1DModel('', '', 30000, 0.25, 300), 'Dimuon_mass')

h.Draw() # Trigger event loop executed distributedly on the Spark cluster

10

● Does this work only with Spark?
● The layer is independent of a specific

backend/scheduler
● Not reinventing the wheel:

Using third-party scheduler to execute tasks
distributedly

● So far supported is …
⬩ … local multi-threading

(supported natively by RDataFrame)
⬩ … Spark (local and distributed)

● Another popular scheduler to be added
soon is Dask

● Why do we need a layer on top of RDataFrame to
distribute the computation?

● Computing appropriate ranges for single
partitions of the full dataset taking into
account the details of the ROOT file format,
e.g., the range of compressed clusters

● Minimal changes to the programming model
of conventional RDataFrame code

Example of a distributed analysis with RDataFrame

Importance of caching

● Final steps of the analysis with high turnaround cycle is typically heavily IO bound

● Typical bandwidth to the file server: 10 Gbit/s
● 10 Gbit/s = 1280 MByte/s
● Running in the cluster on 100 cores ➔ 13 MByte/s per core
● Typical single core performance when reading from disk: ~ 50 MByte/s
● Scaling out (and scaling up) to hundreds of cores complicated while reading from

remote

● Caching as the solution to improve the throughput and provide fast turnaround cycles

● Typical read speed with random access of a …
● … HDD: < 10 MByte/s
● … SSD: ~ 100 MByte/s ➔ SSD cache is important with high concurrency per node

● Possible solutions for the cache design:
● XRootD proxy with various setups, e.g.,

single proxy per node with filesystem cache
● TFilePrefetch (similar to XRootD filesystem cache)

11

Future fields of study

● How to integrate a Spark cluster (or any other cluster) in the typical HEP
ecosystem?

● Is the future in HEP a mix of Spark-like distributed task scheduling and
traditional batch systems?
● HTCondor-like system ensures efficient usage of resources for

computation intensive tasks
(simulation, skimming, ntuplization, ...)

● Spark-like system with a minimal latency reduce the turnaround
cycle of the final analysis steps which are often repeated
(counting, histogramming, fast control plots, …)

● Is it an interesting project to offer a simple yet efficient integration of
Spark-like and HTCondor-like schedulers in a coherent infrastructure?

● Similar projects, mainly focused on the scikit-hep software stack
● USCMS analysis facilities (HSF workshop 2020)
● Aachen T4 cluster (FSP 2020)

12

https://scikit-hep.org/
https://indico.cern.ch/event/941278/contributions/4104696/
https://indico.cern.ch/event/897005/contributions/4011335/

