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Distributed ROOT with Spark
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● Targets final analysis with a high turnaround 
cycle (~ 30 min)
● Making final selections, histograms, 

repeating the same analysis while 
tweaking the parameters.

● Aggregation of the results directly in the 
application

● Focus on scale out with minimal latency
● Scale out the application instantly on a 

cluster
● Get the aggregated results right back in 

the application with minimal latency
● Supports interactive analysis and 

minimizes the turnaround cycle
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HSF-WLCG workshop talk

http://opendata.web.cern.ch/record/12342
https://indico.cern.ch/event/941278/contributions/4084839/


Coordination requirements 

In order to create a coordinated system between the traditional batch scheduler and Spark, the 
following requirements should be satisfied:

● Retrieve cores/memory unused by the batch system and direct them towards the Spark backend
● Allow multiple users to have access to the same resources before scaling out to other cores of the 

cluster
● Be able to spawn a Spark “node” with variable cpu/memory quota

● Spawn multiple “node” objects on the same machine (Spark standalone way)
● Have a daemon always running that can change dynamically cpu/memory (YARN way)

● Guarantee application isolation for authentication purposes: 
● Run as the submitting user, with their credentials and don’t interfere with other users

● Ensure FAIR scheduling between applications on the Spark cluster
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Spark cluster setup: Standalone

# Create the software stack: install Spark with only requirements Java and Python

# Define the required environment variables
export SPARK_WORKER_DIR=/path/to/work/dir
export SPARK_LOG_DIR=/path/to/log/dir

export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH
export PYTHONPATH=$SPARK_HOME/python:$PYTHONPATH

# Spawn the master
start-master.sh

# Spawn the workers (on any machine in the network)
start-slave.sh spark://<hostname or ip of the master>:7077
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● Minimal dependencies
● Simple setup
● Weak support for multi-user scenario

● No fair scheduling
● No dynamic scaling of available 

resources
● No native integration with 

authentication tools



Spark cluster setup: YARN

# Create the software stack (Java and Python required):
# Download Hadoop, Spark (must be compatible versions)

# Define the required environment variables
export HADOOP_HOME=/path/to/hadoop/dir
export SPARK_HOME=/path/to/spark/dir
export JAVA_HOME=/path/to/java/dir

export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
export PYTHONPATH=$SPARK_HOME/python:$PYTHONPATH

# Spawn the YARN resourcemanager (RM)
yarn resourcemanager

# Spawn the YARN nodemanagers (on any machine in the network)
yarn nodemanager # the RM IP is written in the config file
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● Slightly more dependencies
● Setup becomes more complicated 

and multiple configuration files need 
to be tweaked

● Strong support for multiple users
● Fair scheduling natively
● NM quota can be changed 

dynamically through REST API
● Kerberos integration



COBalD/TARDIS + YARN/SPARK

● Through YARN we can scale Spark cluster resources 
up/down through a full REST api

● How do we coordinate between YARN and 
COBalD/TARDIS?
● Full resources utilisation: fire up Spark workers when needed and give 

idle resources to HTCondor
● Interactive analysis as first class citizen on some nodes
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YARN REST API
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import requests
import json

# ResourceManager URL
rm_url = “http://hostname:port”
# Nodes of the cluster
nodes_path = rm_url + “/ws/v1/cluster/nodes”

# Retrieve resources of a certain node
node_url = nodes_path + NODE_ID 
resources = requests.get(node_url).json()[“node”][“totalResource”]

# Set new quotas
payload = {"resource": {"memory": MEMORY, "vCores": CORES}, "overCommitTimeout": -1}
requests.post(node_url + “/resource”, json=payload)



Distributed analysis with RDataFrame

import ROOT
import PyRDF # Development module for distributed RDataFrame

PyRDF.use('spark', conf={
    'spark.master': 'spark://sg01:7077',
    'spark.app.name': 'Dimuon spectrum',
})

df = PyRDF.RDataFrame('Events',
                      'root://eospublic.cern.ch//eos/opendata/cms/derived-data/' +
                      'AOD2NanoAODOutreachTool/Run2012BC_DoubleMuParked_Muons.root')

h = df.Filter('nMuon == 2')
      .Filter('Muon_charge[0] != Muon_charge[1]')
      .Define('Dimuon_mass',
              'ROOT::VecOps::InvariantMass(Muon_pt, Muon_eta, Muon_phi, Muon_mass)')
      .Histo1D(ROOT.RDF.TH1DModel('', '', 30000, 0.25, 300), 'Dimuon_mass')

h.Draw() # Trigger event loop executed distributedly on the Spark cluster
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● Does this work only with Spark?
● The layer is independent of a specific 

backend/scheduler
● Not reinventing the wheel:

Using third-party scheduler to execute tasks 
distributedly

● So far supported is …
⬩ … local multi-threading

(supported natively by RDataFrame)
⬩ … Spark (local and distributed)

● Another popular scheduler to be added 
soon is Dask

● Why do we need a layer on top of RDataFrame to 
distribute the computation?

● Computing appropriate ranges for single 
partitions of the full dataset taking into 
account the details of the ROOT file format, 
e.g., the range of compressed clusters

● Minimal changes to the programming model 
of conventional RDataFrame code

Example of a distributed analysis with RDataFrame



Importance of caching

● Final steps of the analysis with high turnaround cycle is typically heavily IO bound

● Typical bandwidth to the file server: 10 Gbit/s
● 10 Gbit/s = 1280 MByte/s
● Running in the cluster on 100 cores ➔ 13 MByte/s per core
● Typical single core performance when reading from disk: ~ 50 MByte/s
● Scaling out (and scaling up) to hundreds of cores complicated while reading from 

remote

● Caching as the solution to improve the throughput and provide fast turnaround cycles

● Typical read speed with random access of a …
● … HDD: < 10 MByte/s
● … SSD: ~ 100 MByte/s ➔ SSD cache is important with high concurrency per node

● Possible solutions for the cache design:
● XRootD proxy with various setups, e.g.,

single proxy per node with filesystem cache
● TFilePrefetch (similar to XRootD filesystem cache)
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Future fields of study

● How to integrate a Spark cluster (or any other cluster) in the typical HEP 
ecosystem?

● Is the future in HEP a mix of Spark-like distributed task scheduling and 
traditional batch systems?
● HTCondor-like system ensures efficient usage of resources for 

computation intensive tasks
(simulation, skimming, ntuplization, ...)

● Spark-like system with a minimal latency reduce the turnaround 
cycle of the final analysis steps which are often repeated
(counting, histogramming, fast control plots, …)

● Is it an interesting project to offer a simple yet efficient integration of 
Spark-like and HTCondor-like schedulers in a coherent infrastructure?

● Similar projects, mainly focused on the scikit-hep software stack
● USCMS analysis facilities (HSF workshop 2020)
● Aachen T4 cluster (FSP 2020)
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https://scikit-hep.org/
https://indico.cern.ch/event/941278/contributions/4104696/
https://indico.cern.ch/event/897005/contributions/4011335/

