Modern distributed analysis with ROOT

Integrating Spark in a multi-managed cluster system

Vincenzo Padulano, Stefan Wunsch

ROOT

Data Analysis Framework

https://root.cern

https://root.cern

Distributed ROOT with Spark

e Targets final analysis with a high turnaround
cycle (~ 30 min)
e Making final selections, histograms,
repeating the same analysis while
tweaking the parameters.

e Aggregation of the results directly in the
application

e Focus on scale out with minimal latency
e Scale out the application instantly on a
cluster
e Get the aggregated results right back in
the application with minimal latency
e Supports interactive analysis and
minimizes the turnaround cycle

First results on KIT cluster

CMS Open Data Vs =8TeV,x100, L, =1160 fb"

y J/\V
v Y 1,2,38 Z

10°
104_
10° =
102
1 10 10°
m,, (GeV)

e Dimuon analysis
e Processing 210 GB (100% of total
dataset)
e Data stored in:
o Public EOS
o Cached locally on the nodes

HSE-WLCG workshop talk A“(IT

rInstitut fiir Technologie

Sy

e

Dimuon Analysis - 210 GB dataset

300

200

100

I
=)
o

T T T[T T T T[T T T T [TT T [TT T [TT T T[TTTT[TTTT

%800 7
B —#— Reading remote files ,/
o /
> //

g 700 —%— With XRootD caching (SSD) 7

5 . :

-g_ Physical node /V

£ 600

=

o

—

=y

500

L b b by e e e

[
48
Physical cores

Processing speed with 48 cores:
e Reading from EOS: 510 MByte/s

e \With cache: 780 MByte/s

UNIVERSITAT
POLITECNICA
DE VALENCIA

http://opendata.web.cern.ch/record/12342
https://indico.cern.ch/event/941278/contributions/4084839/

Coordination requirements

In order to create a coordinated system between the traditional batch scheduler and Spark, the
following requirements should be satisfied:

e Retrieve cores/memory unused by the batch system and direct them towards the Spark backend
e Allow multiple users to have access to the same resources before scaling out to other cores of the
cluster
e Be able to spawn a Spark “node” with variable cpu/memory quota
e Spawn multiple “node” objects on the same machine (Spark standalone way)
e Have a daemon always running that can change dynamically cpu/memory (YARN way)
e Guarantee application isolation for authentication purposes:
e Run as the submitting user, with their credentials and don't interfere with other users
e Ensure FAIR scheduling between applications on the Spark cluster

Spark cluster setup: Standalone

SEETKE

Create the software stack: install Spark with only requirements Java and Python

Define the required environment variables
export SPARK_WORKER_DIR=/path/to/work/dir

export SPARK_LOG_DIR=/path/to/log/dir . .
P P g e Minimal dependencies

export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:S$PATH e Simple setup

export PYTHONPATH=$SPARK_HOME/python :$PYTHONPATH e Weak support for multi-user scenario
e No fair scheduling

Spawn the master e Nod . l f ilabl

start-master.sh O aynamic scaling ot avallable

resources
Spawn the workers (on any machine in the network) e No native integration with
start-slave.sh spark://<hostname or ip of the master>:7077 authentication tools

Spark cluster setup: YARN

Create the software stack (Java and Python required):
Download Hadoop, Spark (must be compatible versions)

Define the required environment variables
export HADOOP_HOME=/path/to/hadoop/dir
export SPARK_HOME=/path/to/spark/dir
export JAVA_HOME=/path/to/java/dir

export PATH=$SPARK_HOME/bin :$SPARK_HOME/sbin :$PATH
export PATH=$HADOOP_HOME/bin : SHADOOP_HOME/sbin : SPATH
export PYTHONPATH=$SPARK_HOME/python : $SPYTHONPATH

Spawn the YARN resourcemanager (RM)
yarn resourcemanager

Spawn the YARN nodemanagers (on any machine in the network)
yarn nodemanager # the RM IP is written in the config file

SEETKE

Slightly more dependencies
Setup becomes more complicated
and multiple configuration files need
to be tweaked
Strong support for multiple users
e Fair scheduling natively
e NM quota can be changed
dynamically through REST API
e Kerberos integration

COBalD/TARDIS + YARN/SPARK

e Through YARN we can scale Spark cluster resources
up/down through a full REST api

e How do we coordinate between YARN and
COBalD/TARDIS?

e Full resources utilisation: fire up Spark workers when needed and give

idle resources to HTCondor

e Interactive analysis as first class citizen on some nodes

Backup

YARN REST API

import requests
import json

ResourceManager URL

rm_url = “http://hostname:port”

Nodes of the cluster

nodes_path = rm_url + “/ws/vl/cluster/nodes”

Retrieve resources of a certain node
node_url = nodes_path + NODE_ID
resources = requests.get(node_url).json()[“node”][“totalResource”]

Set new quotas
payload = {"resource": {"memory": MEMORY, "vCores": CORES}, "overCommitTimeout": -1}

requests.post(node_url + “/resource”, json=payload)

°
Example of a distributed analysis with RDataFrame
import ROOT
import PyRDF # Development module for distributed RDataFrame
PyRDF .use('spark', conf={
'spark.master': 'spark://sg@1:7077",
"spark.app.name': 'Dimuon spectrum’,
3]
df = PyRDF.RDataFrame('Events',
'root://eospublic.cern.ch//eos/opendata/cms/derived-data/' +
' AOD2NanoAODOutreachTool/Run2012BC_DoubleMuParked_Muons.root")
h = df.Filter('nMuon == 2") °

.Filter('Muon_charge[@] != Muon_charge[1]")
.Define('Dimuon_mass',

"ROOT: :VecOps: :InvariantMass(Muon_pt, Muon_eta, Muon_phi, Muon_mass)')
.Histo1D(ROOT.RDF.TH1DModel('"', '', 30000, ©.25, 300), 'Dimuon_mass')

h.Draw() # Trigger event loop executed distributedly on the Spark cluster

Does this work only with Spark?

The layer is independent of a specific
backend/scheduler

Not reinventing the wheel:

Using third-party scheduler to execute tasks
distributedly

So far supported is ...

« ..local multi-threading
(supported natively by RDataFrame)
B ... Spark (local and distributed)

Another popular scheduler to be added
soon is Dask

Why do we need a layer on top of RDataFrame to
distribute the computation?

Computing appropriate ranges for single
partitions of the full dataset taking into
account the details of the ROOT file format,
e.g., the range of compressed clusters
Minimal changes to the programming model
of conventional RDataFrame code

10

Importance of caching

Final steps of the analysis with high turnaround cycle is typically heavily IO bound

Typical bandwidth to the file server: 10 Gbit/s

Caching as the solution to improve the throughput and provide fast turnaround cycles

Typical read speed with random access of a ...

Possible solutions for the cache design:

10 Gbit/s = 1280 MByte/s (
Running in the cluster on 100 cores = 13 MByte/s per core @ XROOtD
Typical single core performance when reading from disk: ~ 50 MByte/s

Scaling out (and scaling up) to hundreds of cores complicated while reading from

remote

... HDD: <10 MByte/s
... SSD: ~ 100 MByte/s = SSD cache is important with high concurrency per node

XRootD proxy with various setups, e.g.,
single proxy per node with filesystem cache
TFilePrefetch (similar to XRootD filesystem cache)

11

Future fields of study

e How tointegrate a Spark cluster (or any other cluster) in the typical HEP

HTCondu?

e Isthe future in HEP a mix of Spark-like distributed task scheduling and
traditional batch systems?

e HTCondor-like system ensures efficient usage of resources for
computation intensive tasks
(simulation, skimming, ntuplization, ...)

e Spark-like system with a minimal latency reduce the turnaround
cycle of the final analysis steps which are often repeated
(counting, histogramming, fast control plots, ...)

e Isitaninteresting project to offer a simple yet efficient integration of
Spark-like and HTCondor-like schedulers in a coherent infrastructure?

e Similar projects, mainly focused on the scikit-hep software stack
e USCMS analysis facilities (HSF workshop 2020)
e Aachen T4 cluster (FSP 2020)

12

https://scikit-hep.org/
https://indico.cern.ch/event/941278/contributions/4104696/
https://indico.cern.ch/event/897005/contributions/4011335/

