## Modern distributed analysis with ROOT

Integrating Spark in a multi-managed cluster system

Vincenzo Padulano, Stefan Wunsch





## Distributed ROOT with Spark

- Targets final analysis with a high turnaround cycle (~ 30 min)
  - Making final selections, histograms, repeating the same analysis while tweaking the parameters.
- Aggregation of the results directly in the application
- Focus on scale out with minimal latency
  - Scale out the application instantly on a cluster
  - Get the aggregated results right back in the application with minimal latency
  - Supports interactive analysis and minimizes the turnaround cycle



### First results on KIT cluster



- <u>Dimuon analysis</u>
- Processing 210 GB (100% of total dataset)
- Data stored in:
  - Public EOS
  - Cached locally on the nodes

#### Dimuon Analysis - 210 GB dataset



### Processing speed with 48 cores:

- Reading from EOS: 510 MByte/s
- With cache: 780 MByte/s



UNIVERSITAT POLITÈCNICA DE VALÈNCIA



## Coordination requirements

In order to create a coordinated system between the traditional batch scheduler and Spark, the following requirements should be satisfied:

- Retrieve cores/memory unused by the batch system and direct them towards the Spark backend
- Allow multiple users to have access to the same resources before scaling out to other cores of the cluster
- Be able to spawn a Spark "node" with variable cpu/memory quota
  - Spawn multiple "node" objects on the same machine (Spark standalone way)
  - Have a daemon always running that can change dynamically cpu/memory (YARN way)
- Guarantee application isolation for authentication purposes:
  - Run as the submitting user, with their credentials and don't interfere with other users
- Ensure FAIR scheduling between applications on the Spark cluster



start-master.sh

## Spark cluster setup: Standalone



```
# Define the required environment variables
export SPARK_WORKER_DIR=/path/to/work/dir
export SPARK_LOG_DIR=/path/to/log/dir

export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH
export PYTHONPATH=$SPARK_HOME/python:$PYTHONPATH
# Spawn the master
```

# Spawn the workers (on any machine in the network)
start-slave.sh spark://<hostname or ip of the master>:7077

# Create the software stack: install Spark with only requirements Java and Python

- Minimal dependencies
- Simple setup
- Weak support for multi-user scenario
  - No fair scheduling
  - No dynamic scaling of available resources
  - No native integration with authentication tools



## Spark cluster setup: YARN

```
Spark
```

```
# Create the software stack (Java and Python required):
# Download Hadoop, Spark (must be compatible versions)
# Define the required environment variables
export HADOOP_HOME=/path/to/hadoop/dir
export SPARK_HOME=/path/to/spark/dir
export JAVA_HOME=/path/to/java/dir
export PATH=$SPARK_HOME/bin:$SPARK_HOME/sbin:$PATH
export PATH=$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH
export PYTHONPATH=$SPARK_HOME/python:$PYTHONPATH
# Spawn the YARN resourcemanager (RM)
yarn resourcemanager
# Spawn the YARN nodemanagers (on any machine in the network)
```

yarn nodemanager # the RM IP is written in the config file

- Slightly more dependencies
   Setup becomes more complex
- Setup becomes more complicated and multiple configuration files need to be tweaked
- Strong support for multiple users
  - Fair scheduling natively
  - NM quota can be changed dynamically through REST API
  - Kerberos integration



## COBalD/TARDIS + YARN/SPARK

- Through YARN we can scale Spark cluster resources up/down through a full REST api
- How do we coordinate between YARN and COBalD/TARDIS?
  - Full resources utilisation: fire up Spark workers when needed and give idle resources to HTCondor
  - Interactive analysis as first class citizen on some nodes





### YARN REST API

```
import requests
import json
# ResourceManager URL
rm_url = "http://hostname:port"
# Nodes of the cluster
nodes_path = rm_url + "/ws/v1/cluster/nodes"
# Retrieve resources of a certain node
node_url = nodes_path + NODE_ID
resources = requests.get(node_url).json()["node"]["totalResource"]
# Set new quotas
payload = {"resource": {"memory": MEMORY, "vCores": CORES}, "overCommitTimeout": -1}
requests.post(node_url + "/resource", json=payload)
```



## Distributed analysis with RDataFrame

### **Example of a distributed analysis with RDataFrame**

#### • Does this work only with Spark?

- The layer is independent of a specific backend/scheduler
- Not reinventing the wheel:
   Using third-party scheduler to execute tasks distributedly
- So far supported is ...
  - ... local multi-threading (supported natively by RDataFrame)
  - ... Spark (local and distributed)
- Another popular scheduler to be added soon is Dask

#### Why do we need a layer on top of RDataFrame to distribute the computation?

- Computing appropriate ranges for single partitions of the full dataset taking into account the details of the ROOT file format, e.g., the range of compressed clusters
- Minimal changes to the programming model of conventional RDataFrame code



# Importance of caching

- Final steps of the analysis with high turnaround cycle is typically heavily IO bound
- Typical bandwidth to the file server: 10 Gbit/s
  - 10 Gbit/s = 1280 MByte/s
  - Running in the cluster on 100 cores → 13 MByte/s per core
  - Typical single core performance when reading from disk: ~ 50 MByte/s
  - Scaling out (and scaling up) to hundreds of cores complicated while reading from remote



- Caching as the solution to improve the throughput and provide fast turnaround cycles
- Typical read speed with random access of a ...
  - ... HDD: < 10 MByte/s
  - ... SSD: ~ 100 MByte/s → SSD cache is important with high concurrency per node
- Possible solutions for the cache design:
  - XRootD proxy with various setups, e.g., single proxy per node with filesystem cache
  - TFilePrefetch (similar to XRootD filesystem cache)





## Future fields of study

- How to integrate a Spark cluster (or any other cluster) in the typical HEP ecosystem?
- Is the future in HEP a mix of Spark-like distributed task scheduling and traditional batch systems?
  - HTCondor-like system ensures efficient usage of resources for computation intensive tasks (simulation, skimming, ntuplization, ...)
  - Spark-like system with a minimal latency reduce the turnaround cycle of the final analysis steps which are often repeated (counting, histogramming, fast control plots, ...)
- Is it an interesting project to offer a simple yet efficient integration of Spark-like and HTCondor-like schedulers in a coherent infrastructure?
- Similar projects, mainly focused on the <u>scikit-hep software stack</u>
  - <u>USCMS analysis facilities (HSF workshop 2020)</u>
  - Aachen T4 cluster (FSP 2020)





