Model Independent bounds on NP in Tree Level (constraints from flavour observables)

Gilberto Tetlalmatzi-Xolocotzi

Based on:

A. Lenz, GTX : 1912.07621 / JHEP07(2020)177

CPPS, Theoretische Physik 1, Universität Siegen

Operator Basis

$$\begin{split} \hat{\mathcal{H}}_{eff}^{|\Delta B|=1} &= \frac{G_F}{\sqrt{2}} \begin{cases} \sum_{p,p'=u,c} \lambda_{pp'}^{(q)} \sum_{i=1,2} C_i^{q,pp'}(\mu) \hat{Q}_i^{q,pp'} \\ &+ \sum_{p=u,c} \lambda_p^{(q)} \left[\sum_{i=3}^{10} C_i^q(\mu) \hat{Q}_i^q + C_{7\gamma}^q \hat{Q}_{7\gamma}^q + C_{8g}^q \hat{Q}_{8g}^q \right] \right\} + h. & \lambda_p^{(q)} = V_{pb} V_{p'q}^* , \\ &\frac{\hat{Q}_1^{q,pp'} = \left(\hat{\bar{p}}_{\hat{\rho}} \hat{b}_\alpha \right)_{V-A} \left(\hat{\bar{q}}_\alpha \hat{p}_\beta' \right)_{V-A}, & \hat{Q}_2^{q,pp'} = \left(\hat{\bar{p}} \hat{b} \right)_{V-A} \left(\hat{\bar{q}} \hat{p}' \right)_{V-A}, \\ &\frac{\hat{Q}_3^q = \left(\hat{\bar{q}} \hat{b} \right)_{V-A} \sum_k \left(\hat{\bar{k}} \hat{k} \right)_{V-A}, & \hat{Q}_4^q = \left(\hat{\bar{q}}_\alpha \hat{b}_\beta \right)_{V-A} \sum_k \left(\hat{\bar{k}}_\beta \hat{k}_\alpha \right)_{V-A}, \\ &\hat{Q}_5^q = \left(\hat{\bar{q}} \hat{b} \right)_{V-A} \sum_k \left(\hat{\bar{k}} \hat{k} \right)_{V+A}, & \hat{Q}_6^q = \left(\hat{\bar{q}}_\alpha \hat{b}_\beta \right)_{V-A} \sum_k \left(\hat{\bar{k}}_\beta \hat{k}_\alpha \right)_{V+A}, \\ &\hat{Q}_7^q = \left(\hat{\bar{q}} \hat{b} \right)_{V-A} \sum_k \frac{3}{2} e_k \left(\hat{\bar{k}} \hat{k} \right)_{V-A}, & \hat{Q}_{10}^q = \left(\hat{\bar{q}}_\alpha \hat{b}_\beta \right)_{V-A} \sum_k \frac{3}{2} e_k \left(\hat{\bar{k}}_\beta \hat{k}_\alpha \right)_{V-A}, \\ &\hat{Q}_{7\gamma}^q = \left(\hat{\bar{q}} \hat{b} \right)_{V-A} \sum_k \frac{3}{2} e_k \left(\hat{\bar{k}} \hat{k} \right)_{V-A}, & \hat{Q}_{8g}^q = \frac{g_s}{8\pi^2} m_b \bar{q} \sigma_{\mu\nu} \left(1 + \gamma_5 \right) \hat{F}^{\mu\nu} \hat{b}, & \hat{Q}_{8g}^q = \frac{g_s}{8\pi^2} m_b \bar{q} \sigma_{\mu\nu} \left(1 + \gamma_5 \right) \hat{G}^{\mu\nu} \hat{b}. \end{split}$$

New Physics at Tree Level

Strategy $C_1(M_W) := C_1^{SM}(M_W) + \Delta C_1(M_W),$ $C_2(M_W) := C_2^{SM}(M_W) + \Delta C_2(M_W),$

 $\vec{C}(\mu) = U(\mu, M_W, \alpha) \vec{C}(M_W),$ $\mu = m_b$ Evolution matrix $\boldsymbol{U}(\mu, M_W, \alpha) = \left[\boldsymbol{U}_0 + \frac{\alpha_s(\mu)}{4\pi} \boldsymbol{J} \boldsymbol{U}_0 - \frac{\alpha_s(M_W)}{4\pi} \boldsymbol{U}_0 \boldsymbol{J} \right]$ $+\frac{\alpha}{4\pi}\Big(\frac{4\pi}{\alpha_{\circ}(\mu)}\boldsymbol{R}_{0}+\boldsymbol{R}_{1}\Big)\Big],$ $C_1^{SM}(m_h) \simeq -0.30$ $C_2^{SM}(m_h) \simeq 1.0$

Chi² Fit

$$\chi^{2}(\vec{\omega}) = \sum_{i} \left(\frac{\tilde{O}_{i, \exp} - \tilde{O}_{i, \text{theo}}(\vec{\omega})}{\sigma_{i, \exp}} \right)^{2},$$

 $parameters to be$
 $fitted$
 $\vec{\omega} = \left(\Delta C_{1}(M_{W}), \Delta C_{2}(M_{W}), \vec{\lambda} \right).$

nuisance parameters

decay constants, form factors, masses, other QCD quantities, etc.

Use a likelihood ratio test assuming the validity of Wilks theorem.

Observables $b \rightarrow u \overline{u} d$

$$\frac{\bar{B}_d^0 \to \pi^+ \rho^-}{\bar{B}_d^0 \to \rho^+ \pi^-} \longrightarrow \tilde{S}_{\pi\rho} = \frac{2 \operatorname{Im} \left(\lambda_{\pi\rho}^{\mathrm{d}}\right)}{1 + |\lambda_{\pi\rho}^d|^2}, \quad \tilde{S}_{\rho\pi} = \frac{2 \operatorname{Im} \left(\lambda_{\rho\pi}^{\mathrm{d}}\right)}{1 + |\lambda_{\rho\pi}^d|^2},$$

$$R_{\rho\rho} = \frac{\mathcal{B}r\left(B^{-} \to \rho_{L}^{-}\rho_{L}^{0}\right)}{\mathcal{B}r\left(\bar{B}_{d}^{0} \to \rho_{L}^{+}\rho_{L}^{-}\right)} = \frac{\left|\mathcal{A}_{\rho^{-}\rho^{0}}\right|^{2}}{\left|\mathcal{A}_{\rho^{+}\rho^{-}}\right|^{2}},$$

Observables $b \rightarrow c \,\overline{u} \, d$ $R_{D^*\pi} = \frac{\Gamma(\bar{B}^0 \rightarrow D^{*+}\pi^{-})}{d\Gamma(\bar{B}^0 \rightarrow D^{*+}l^-\bar{\nu}_l)/dq^2|_{q^2=m_{\pi}^2}}$

 $b \rightarrow c \overline{c} s$

 $S_{J/\psi\phi} = \frac{2 \, \mathcal{I}m\left(\lambda_{J/\psi\phi}^s\right)}{1 + \left|\lambda_{J/\psi\phi}^s\right|^2} + \frac{1}{1 + \left$ $\mathcal{B}r(\bar{B}\to X_s\gamma)$

 $\Delta \Gamma_s$

Observables $b \rightarrow c \overline{c} d$

 $M_{12}^d \longrightarrow \sin(2\beta_d) \qquad \mathcal{B}_r \ (\bar{B} \to X_d \gamma)$

Multi-channel Observables

$$a_{sl}^s$$
 a_{sl}^d $\Delta\Gamma_s$

Useful for obtaining maximal constraints

Important uncertainties in QCDfactorization

Annihilation end-point singularities

$$X_A = \left(1 + \rho_A e^{i\phi_A}\right) \ln \frac{m_B}{\Lambda_h} \qquad 0 < \rho_A < 2 , \ 0 < \phi_A < 2\pi$$

Can play an important role in the determination of the uncertainties of some of our observables.

Important uncertainties in QCDfactorization

Individual annihilation topological amplitudes are of O(5%)

The total effect in the uncertainty of the observables can be Important if the Amplitudes depend on several of them.

Determination of the allowed NP regions per observable

Turn on one coefficient at a time.

Assume complex NP contribution to the tree-level Wilson coefficients.

Perform the fit per b quark level transition

variations of O(1) in the NP contributions

 $-5.97 < \Delta \Gamma_d / \Delta \Gamma_d^{SM} < 4.67$, b--> c u d

Universal Fit

Obtain maximal NP constraints by taking

$$\Delta C_1^{s,ab}(M_W) = \Delta C_1^{d,ab}(M_W) = \Delta C_1(M_W)$$
$$\Delta C_2^{s,ab}(M_W) = \Delta C_2^{d,ab}(M_W) = \Delta C_2(M_W)$$

for a = u, c and b = u, c

Universal Fit

90 % C.L. Regions

$$\operatorname{Re}\left[\Delta C_{1}(M_{W})\right]\Big|_{\min} = -0.36, \operatorname{Im}\left[\Delta C_{1}(M_{W})\right]\Big|_{\min} = -0.47,$$
$$\operatorname{Re}\left[\Delta C_{1}(M_{W})\right]\Big|_{\max} = 0.26, \operatorname{Im}\left[\Delta C_{1}(M_{W})\right]\Big|_{\max} = 0.45,$$

$$\operatorname{Re} \left[\Delta C_2(M_W) \right] \Big|_{\min} = -0.11, \quad \operatorname{Im} \left[\Delta C_2(M_W) \right] \Big|_{\min} = -0.04,$$
$$\operatorname{Re} \left[\Delta C_2(M_W) \right] \Big|_{\max} = -0.02, \quad \operatorname{Im} \left[\Delta C_2(M_W) \right] \Big|_{\max} = 0.02.$$

Impact on other Observables

Effect of the Life-time ratio

Impact of the uncertainty

To be updated soon....

Semileptonic Asymmetries

projections for the uncertainty

- $\delta\left(a_{sl}^{s}\right) = 1 \cdot 10^{-3} \qquad \text{LHCb } 2025$
- $\delta\left(a_{sl}^{s}\right) = 3 \cdot 10^{-4} \qquad \text{Upgrade II}$

Closing Remarks

- Deviations with respect to the SM on the tree-level Wilson coefficients C₁ and C₂ are allowed by current theoretical and experimental results in *flavour observables*.
- The deviations on *C*¹ *can be as sizeable as 40%.*
- Potential enhancements in the observable $\Delta \Gamma_d$
- Potential sizeable effects on the uncertainty of the CKM angle gamma.
- Updates on mixing observables and the neutral B meson lifetime ratio play a central role in reducing the size of the deviations on C₁ and C₂.