
www.helmholtz.ai

Accelerating Neural Network Training with Distributed
Asynchronous and Selective Optimization (DASO)

Daniel Coquelin1, Charlotte Debus1, Markus Götz1, Fabrice von der Lehr2,
James Kahn1, Martin Siggel2, Achim Streit1

1: KIT: SCC
2: DLR: SC

Parallel Neural Networks
Training Networks Faster

 Data parallel: networks mirrored on all processes

 Model parallelism: network layers are divided across processes

 Pipelining: network is divided between processes by layer

Data Parallel Neural Networks
Optimizing -- Focusing on SGD

 In DPNNs model parameters must be
synchronized
 Often done after each batch
 All processes talk to each other

 Synchronous vs Asynchronous methods

 Regardless of method: this is one of the
most prominent training bottlenecks!

Optimizing DPNN Synchronization
Methods for Reducing Communication Time

 Tensor Fusion

 Compression

 Modified Allreduce logic

 Sending data during the backward step

Old-School Distributed Computing
Hiding Communication Behind Computation

 Long studied, highly desired, arduous to do well

 When done well -> much faster execution without loss of accuracy

HeAT – The Helmholtz Analytics Toolkit
A Distributed and Accelerated Tensor Framework

 Distributed tensor framework

 NumPy-like, Python interface

 Accelerated and distributed processing

 GPU Computing

 Multiple cluster nodes via MPI

 Seamlessly use GPUs and CPUs on both common
clusters, personal workstations, and HPC systems

 Algorithms specifically tailored to distributed data

 High-level algorithms

 Sklearn-like machine-learning

 PyTorch-style Neural Networks

Distributed Asynchronous and Selective Optimization - DASO
Motivation

 Better utilize cluster architecture

 Reduce communication overhead

 Increase speed with selective global updates

 Divide the global synchronization into three steps:

1) Local Synchronization

2) Global Synchronization

3) Local Update

Distributed Asynchronous and Selective Optimization - DASO
Local Synchronization

 Traditional synchronization of gradients

 torch.nn.DistributedDataParallel

Distributed Asynchronous and Selective Optimization - DASO
Global Synchronization

 One GPU/node communicates parameters
with the other nodes

 MPI Groups

 Average operation only occurs within this
group

Distributed Asynchronous and Selective Optimization - DASO
Local Update

 After averaging, the MPI Group
member sends it to overwrite the
network parameters on the other
GPUs

Distributed Asynchronous and Selective Optimization - DASO
Synchronization Order in Practice

 Warm-up : traditional DPNN training

 Cycling
 delay between sending and receiving global

parameters
 weighted average for folding in global parameters to

updated model states

 Cool-down: traditional DPNN training

Distributed Asynchronous and Selective Optimization - DASO
Cycling Phase

 After parameters are sent, GPUs local to one node
continue to train

 After `S` batches, the global parameters are received

 Weighted average to merge local paramters
 local parameters are doubly weighted

 The number of batches, `S`, between sending and
receiving parameters cycles by factors of two
 i.e. 4, 2, 1, 4, 2, 1, ...

Distributed Asynchronous and Selective Optimization - DASO
Benefits

 Fully utilize computing clusters

 Maintain accuracy at large node counts

 Easy to use / implement

DASO vs Horovod – ImageNet Training with ResNet-50

DASO - Distributed Asynchronous and Selective Optimization

DASO vs Horovod – State-Of-The-Art Model on CityScapes

DASO - Distributed Asynchronous and Selective Optimization

DASO
PyTorch-Style + HPC

 Currently, can you:

 Train a PyTorch NN with a HeAT dataset? ✓
 Use PyTorch functions within training? ✓
 Use the PyTorch Dataloader? ✓
 Train with a dataset which does not fit into the available memory? ✓
 Train a network faster than Horovod? ✓

Bottom Line:
DASO trains a network up to 34% faster than Horovod without losing accuracy.

Come and Feel the HeAT!

 Open source software with the liberal MIT license

 Install it with the PIP package:
pip install heat

Or join us on GitHub:
git clone https://github.com/helmholtz-analytics/heat

Acknowledgements

 All collaborators, admins and assistants. In particular:
 Achim Basermann, Philipp Bekemeyer, Lena Blind, Benjamin Bourgart, Claudia Comito, Daniel

 Coquelin, Charlotte Debus, Michael Denker, Philipp Glock, Klaus Görgen, Björn Hagemeier,
 Stefan Kollet, Philipp Knechtges, Kai Krajsek, Jakob Ohm, Melven Röhrig-Zöllner, Simon
 Schmitz, Alexander, Schug, Martin Siggel, Luca Spataro, Achim Streit, Alexandre Strube, Michael
 Tarnawa, Arthur Voronin, Marie Weiel-Potyagaylo

 This work is supported by the Helmholtz Association Initiative and Networking Fund (INF) under
project number ZT-I-0003

 This work was funded by Helmholtz Association’s Initiative and Networking Fund through Helmholtz
AI

 Thank you to everyone for participating in this project and for bringing HeAT to life!

References

 Jonas Hahnfeld, Tim Cramer, Michael Klemm, Christian Terboven, and Matthias S. Müller. A pattern
for overlapping communication and computation with openmp In Bronis R. de Supinski, Stephen
L.Olivier, Christian Terboven, Barbara M.Chapman, and Matthias S. Mller, editors, Scaling OpenMP
for Exascale Performance and Portability, pages 325−337, Cham, 2017. Springer International
Publishing.

 https://yangkky.github.io/2019/07/08/distributed-pytorch-tutorial.html
 Ben-Nun, T. and Hoefler, T. Demystifying Parallel and Distributed Deep Learning: An In-depth

Concurrency Analysis. ACM Computing Surveys (CSUR), 52(4):1–43, 2019. doi: 10.1145/3320060.
 https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-

d1f34b4911da

Available Features and Ongoing Projects

 Available Currently:

 Mean, Std, Var, Average

 Reshape, flatten, ravel, flip

 Complex numbers

 Matrix multiplication

 Histograms

 K-means + friends

 Spectral clustering

 LASSO

 Data Parallel Neural Networks

 And many more!

Simple, 2 process example

 Ongoing Projects

 ASSET

 mpi4torch

 SVD

 DPNN improvements and extenstions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

