HELMHOLT Z Al cooperation unir

Accelerating Neural Network Training with Distributed

\\\\\\\\\\\

RS
v“ # .
=Y /i =
= T S
2

Daniel Coquelint, Charlotte Debus?, Markus Gotz?, ‘\‘&‘ von der Lehr?,
James Kahn! Martin Siggel?, Achim Streit! Sl

Www.helmholtz.ai

D’A’

1: KIT: SCC
2: DLR: SC

Parallel Neural Networks
Training Networks Faster

“ Data parallel: networks mirrored on all processes
“ Model parallelism: network layers are divided across processes
* Pipelining: network is divided between processes by layer

PLi P S
e [B8s [T Plhss

E X K e P1 P2 P3

(a) Data Parallelism (b) Model Parallelism (c) Layer Pipelining

Data Parallel Neural Networks
Optimizing -- Focusing on SGD

“ In DPNNs model parameters must be
synchronized

* Often done after each batch
* All processes talk to each other
* Synchronous vs Asynchronous methods

“ Regardless of method: this is one of the
most prominent training bottlenecks!

GPUO

GPU1

GPUn

HELMHOLTZ Al

Optimizing DPNN Synchronization
Methods for Reducing Communication Time

" Tensor Fusion * Modified Allreduce logic
“ Compression * Sending data during the backward step

Worker A

Worker C

S

Old-School Distributed Computing
Hiding Communication Behind Computation

“ Long studied, highly desired, arduous to do well
“ When done well -> much faster execution without loss of accuracy

No Overlap Overlapping Communication

comp. A

. comp. B
computation
-IEI

v
time to soultion

time to soultion

HeAT - The Helmholtz Analytics Toolkit
A Distributed and Accelerated Tensor Framework

* Distributed tensor framework

' NumPy-like, Python interface

Accelerated and distributed processing

} GPU Computing
\\ 3 Multiple cluster nodes via MPI

Helmholtz Analytics Toolkit

Seamlessly use GPUs and CPUs on both common
clusters, personal workstations, and HPC systems

Algorithms specifically tailored to distributed data

,J Jﬂ LICH ﬂ(IT * High-level algorithms

DLR FORSCHUNGSZENTRUM Karlsruher Institut fuir Technologie . . .
} Sklearn-like machine-learning

)} PyTorch-style Neural Networks

Distributed Asynchronous and Selective Optimization - DASO
Motivation

“ Better utilize cluster architecture

* Reduce communication overhead

“ Increase speed with selective global updates

“ Divide the global synchronization into three steps:
1) Local Synchronization
2) Global Synchronization
3) Local Update

HELMHOLTZ Al

Distributed Asynchronous and Selective Optimization - DASO
Local Synchronization

* Traditional synchronization of gradients
* torch.nn.DistributedDataParallel

Local Synchronization

MNode X

S iy

Average

f_%/%v

| GPU . GPUB . GPUD

Distributed Asynchronous and Selective Optimization - DASO
Global Synchronization

* One GPU/node communicates parameters Global Synchronization
with the other nodes S Node 1
* MPI Groups GPU:A | | GPu:B _ [N [crus
. cy s . GPRU:C GPU:D GPU:C GPLU:D
“ Average operation only occurs within this —
group Node 2 Node 2
Ry [crus icrie 1Y | cru:s
GPU:C GPU:D GPU:C GPU:D
Node P Node P
GPU:B N | GruB
GPU:C GPU:D GPLU:C GPU:D

Distributed Asynchronous and Selective Optimization - DASO
Local Update

* After averaging, the MPI Group

member sends it to overwrite the Local Update
network parameters on the other
GPUs Node X
GPU:A GPU:B GPU:C GPU:D
Broadcast
GPU:A GPU:B GPU:C GPU:D

R RRRRRRRRRRRRRRRRDRDDRDRRRRwrw vetwvo1LM0

Distributed Asynchronous and Selective Optimization - DASO
Synchronization Order in Practice

* Warm-up : traditional DPNN training qﬁml
[C I ;Lm:al Sym:._l—-—)- Global Send ----F
yeins | Batcht+ 1
* delay between sending and receiving global \
parameters {;
* weighted average for folding in global parameters to :
updated model states | Batcht+s
“ Cool-down: traditional DPNN training ‘\ijm.s,..q Global Recy. -----

N

| Weighted Average

e g
(/

| Batch t + ..

v

R RRRRRRRRRRRRRRRRDRDDRDRRRRwrw vetwvo1LM0

Distributed Asynchronous and Selective Optimization - DASO
Cycling Phase

“ After parameters are sent, GPUs local to one node %
continue to train [Local Sync. —>! Global Send |-->
“ After 'S’ batches, the global parameters are received |“““"C
' Local Sync.
“ Weighted average to merge local paramters (__J r
* local parameters are doubly weighted :
* The number of batches, 'S, between sending and |Ba":h\::
receiving parameters cycles by factors of two 12eE 5{':-| ‘}?“‘ iy
* |e 4, 2, 1, 4, 2, 1, | Weighted Average

T Y
{./

| Batcht + ...

v

HELMHOLT

Distributed Asynchronous and Selective Optimization - DASO
Benefits

import heat as ht
import torch

* Fully utilize computing clusters
“ Maintain accuracy at large node counts

create PylTorch distributed group

wWworld size = ht .MPI_WORLD.size

rank = ht.MPFI WORLD.rank

local_rank = rank % num_local_gpus

torch.distributed.init_process_group|(
backend= ;

10 rank=lccal_rank,

11 world size=world _size

12)

“ Easy to use / implement

0O -1 oy L0 d= L ba o=

o

14 # the DASO optimizer 1is created
15 daso_coptimizer = ht.optim.DASO(
16 local_optimizer=optimizer,
17 total_epochs=num_epochs
18)

20 # the hierarchical netweork 1is created

21 ht_model = ht.nn.DataParallelMultiGPU/(

22 net,
23 daso_optimizer
24)

R RRRRRRRRRRRRRRRRDRDDRDRRRRwrw vetwvo1LM0

DASO vs Horovod - ImageNet Training with ResNet-50
DASO - Distributed Asynchronous and Selective Optimization

Nodes Nodes
4 8 16 32 64 4 8 16 32 64
A —8— DASO 100- EEE DASO
= 101 . —4&-- Horovod B Horovod
o | | 764 765 766 762 761 76. .
% 2 80 76 762 761 763 755 763 . 743
s =
a0
e Q 60
= <
g n
5 & 401
= =
0
=1 20
T T T T T 0'
16 32 64 128 256 16 32 64 128 256

GPUs GPUs

DASO vs Horovod - State-Of-The-Art Model on CityScapes

DASO - Distributed Asynchronous and Selective Optimization

Tota Training Time [h]

—
i

Nodes
4 8 16 32 64
& —e— DASO
—4-- Horovod

16

32

128 256

IOU

1.0

0.8+

0.6+

0.4-

0.2

0.0-

16 32

64

0.819

16

0.823

32

0.770 0.782 0.759

HEE DASO
BN Horovod

64 128 256

DASO
PyTorch-Style + HPC

* Currently, can you:
* Train a PyTorch NN with a HeAT dataset? v/
* Use PyTorch functions within training? v/
* Use the PyTorch Dataloader? v/
* Train with a dataset which does not fit into the available memory? v

* Train a network faster than Horovod? v/

Bottom Line:
DASO trains a network up to 34% faster than Horovod without losing accuracy.

HELMHOLT

Come and Feel the HeAT!

“ Open source software with the liberal MIT license

* Install it with the PIP package:
pip install heat

Or join us on GitHub:
git clone https://github.com/helmholtz-analytics/heat

Acknowledgements

All collaborators, admins and assistants. In particular:
Achim Basermann, Philipp Bekemeyer, Lena Blind, Benjamin Bourgart, Claudia Comito, Daniel
Coquelin, Charlotte Debus, Michael Denker, Philipp Glock, Klaus Gérgen, Bjérn Hagemeier,
Stefan Kollet, Philipp Knechtges, Kai Krajsek, Jakob Ohm, Melven Ro6hrig-Z6éliner, Simon
Schmitz, Alexander, Schug, Martin Siggel, Luca Spataro, Achim Streit, Alexandre Strube, Michael
Tarnawa, Arthur Voronin, Marie Weiel-Potyagaylo

This work is supported by the Helmholtz Association Initiative and Networking Fund (INF) under
project number ZT-1-0003

This work was funded by Helmholtz Association’s Initiative and Networking Fund through Helmholtz
Al

Thank you to everyone for participating in this project and for bringing HeAT to life!

HELMHOLTZAI

References

Jonas Hahnfeld, Tim Cramer, Michael Klemm, Christian Terboven, and Matthias S. Miiller. A pattern
for overlapping communication and computation with openmp In Bronis R. de Supinski, Stephen
L.Olivier, Christian Terboven, Barbara M.Chapman, and Matthias S. Mller, editors, Scaling OpenMP
for Exascale Performance and Portability, pages 325-337, Cham, 2017. Springer International
Publishing.

https://yangkky.github.io/2019/07/08/distributed-pytorch-tutorial.ntml

Ben-Nun, T. and Hoefler, T. Demystifying Parallel and Distributed Deep Learning: An In-depth
Concurrency Analysis. ACM Computing Surveys (CSUR), 52(4):1-43, 2019. doi: 10.1145/3320060.

https://towardsdatascience.com/visual-intuition-on-ring-allreduce-for-distributed-deep-learning-
d1f34b4911da

HELMHOLTZAI

Available Features and Ongoing Projects
Simple, 2 process example

“ Available Currently: “ Ongoing Projects
“ Mean, Std, Var, Average “ ASSET

“ Reshape, flatten, ravel, flip " mpidtorch

* Complex numbers * SVD

* Matrix multiplication DPNN improvements and extenstions
“ Histograms

* K-means + friends

" Spectral clustering

* LASSO

* Data Parallel Neural Networks

“ And many more!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

