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Parallel Neural Networks
Training Networks Faster

“ Data parallel: networks mirrored on all processes
“ Model parallelism: network layers are divided across processes
* Pipelining: network is divided between processes by layer
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Data Parallel Neural Networks
Optimizing -- Focusing on SGD

“ In DPNNs model parameters must be
synchronized

* Often done after each batch
* All processes talk to each other
* Synchronous vs Asynchronous methods

“ Regardless of method: this is one of the
most prominent training bottlenecks!
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Optimizing DPNN Synchronization
Methods for Reducing Communication Time

" Tensor Fusion * Modified Allreduce logic
“ Compression * Sending data during the backward step
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Old-School Distributed Computing
Hiding Communication Behind Computation

“ Long studied, highly desired, arduous to do well
“ When done well -> much faster execution without loss of accuracy
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HeAT - The Helmholtz Analytics Toolkit
A Distributed and Accelerated Tensor Framework

* Distributed tensor framework

' NumPy-like, Python interface

Accelerated and distributed processing

} GPU Computing
\\ 3 Multiple cluster nodes via MPI

Helmholtz Analytics Toolkit

Seamlessly use GPUs and CPUs on both common
clusters, personal workstations, and HPC systems

Algorithms specifically tailored to distributed data
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Distributed Asynchronous and Selective Optimization - DASO
Motivation

“ Better utilize cluster architecture

* Reduce communication overhead

“ Increase speed with selective global updates

“ Divide the global synchronization into three steps:
1) Local Synchronization
2) Global Synchronization
3) Local Update
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Distributed Asynchronous and Selective Optimization - DASO
Local Synchronization

* Traditional synchronization of gradients
* torch.nn.DistributedDataParallel

Local Synchronization
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Distributed Asynchronous and Selective Optimization - DASO
Global Synchronization

* One GPU/node communicates parameters Global Synchronization
with the other nodes S Node 1
* MPI Groups GPU:A | | GPu:B _ [N [crus
. cy s . GPRU:C GPU:D GPU:C GPLU:D
“ Average operation only occurs within this —
group Node 2 Node 2
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Distributed Asynchronous and Selective Optimization - DASO
Local Update

* After averaging, the MPI Group

member sends it to overwrite the Local Update
network parameters on the other
GPUs Node X
GPU:A GPU:B GPU:C GPU:D
Broadcast
GPU:A GPU:B GPU:C GPU:D
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Distributed Asynchronous and Selective Optimization - DASO
Synchronization Order in Practice

* Warm-up : traditional DPNN training qﬁml
[ C I ;Lm:al Sym:._l—-—)- Global Send ----F
yeins | Batcht+ 1
* delay between sending and receiving global \
parameters {;
* weighted average for folding in global parameters to :
updated model states | Batcht+s
“ Cool-down: traditional DPNN training ‘\ijm.s,..q Global Recy. -----
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Distributed Asynchronous and Selective Optimization - DASO
Cycling Phase

“ After parameters are sent, GPUs local to one node %
continue to train [ Local Sync. —>! Global Send |-->
“ After 'S’ batches, the global parameters are received |“““"C
' Local Sync.
“ Weighted average to merge local paramters (__J r
* local parameters are doubly weighted :
* The number of batches, 'S, between sending and |Ba":h\::
receiving parameters cycles by factors of two 12eE 5{':-| ‘}?“‘ iy
* |e 4, 2, 1, 4, 2, 1, | Weighted Average
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Distributed Asynchronous and Selective Optimization - DASO
Benefits

import heat as ht
import torch

* Fully utilize computing clusters
“ Maintain accuracy at large node counts

# create PylTorch distributed group

wWworld size = ht .MPI_WORLD.size

rank = ht.MPFI WORLD.rank

local_rank = rank % num_local_gpus

torch.distributed.init_process_group|(
backend= ;

10 rank=lccal_rank,

11 world size=world _size

12 )

“ Easy to use / implement
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14 # the DASO optimizer 1is created
15 daso_coptimizer = ht.optim.DASO(
16 local_optimizer=optimizer,
17 total_epochs=num_epochs
18 )

20 # the hierarchical netweork 1is created

21 ht_model = ht.nn.DataParallelMultiGPU/(

22 net,
23 daso_optimizer
24 )
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DASO vs Horovod - ImageNet Training with ResNet-50
DASO - Distributed Asynchronous and Selective Optimization
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DASO vs Horovod - State-Of-The-Art Model on CityScapes

DASO - Distributed Asynchronous and Selective Optimization
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DASO
PyTorch-Style + HPC

* Currently, can you:
* Train a PyTorch NN with a HeAT dataset? v/
* Use PyTorch functions within training? v/
* Use the PyTorch Dataloader? v/
* Train with a dataset which does not fit into the available memory? v

* Train a network faster than Horovod? v/

Bottom Line:
DASO trains a network up to 34% faster than Horovod without losing accuracy.
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Come and Feel the HeAT!

“ Open source software with the liberal MIT license

* Install it with the PIP package:
pip install heat

Or join us on GitHub:
git clone https://github.com/helmholtz-analytics/heat
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Available Features and Ongoing Projects
Simple, 2 process example

“ Available Currently: “ Ongoing Projects
“ Mean, Std, Var, Average “ ASSET

“ Reshape, flatten, ravel, flip " mpidtorch

* Complex numbers * SVD

* Matrix multiplication DPNN improvements and extenstions
“ Histograms

* K-means + friends

" Spectral clustering

* LASSO

* Data Parallel Neural Networks

“ And many more!
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