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Parallel Neural Networks
Training Networks Faster

 Data parallel: networks mirrored on all processes

 Model parallelism: network layers are divided across processes

 Pipelining: network is divided between processes by layer



Data Parallel Neural Networks
Optimizing -- Focusing on SGD

 In DPNNs model parameters must be 
synchronized
 Often done after each batch
 All processes talk to each other

 Synchronous vs Asynchronous methods

 Regardless of method: this is one of the 
most prominent training bottlenecks!



Optimizing DPNN Synchronization 
Methods for Reducing Communication Time

 Tensor Fusion

 Compression

 Modified Allreduce logic

 Sending data during the backward step



Old-School Distributed Computing
Hiding Communication Behind Computation

 Long studied, highly desired, arduous to do well

 When done well -> much faster execution without loss of accuracy



HeAT – The Helmholtz Analytics Toolkit
A Distributed and Accelerated Tensor Framework

 Distributed tensor framework

 NumPy-like, Python interface

 Accelerated and distributed processing

 GPU Computing

 Multiple cluster nodes via MPI

 Seamlessly use GPUs and CPUs on both common 
clusters, personal workstations, and HPC systems

 Algorithms specifically tailored to distributed data

 High-level algorithms

 Sklearn-like machine-learning

 PyTorch-style Neural Networks



Distributed Asynchronous and Selective Optimization - DASO
Motivation

 Better utilize cluster architecture

 Reduce communication overhead 

 Increase speed with selective global updates

 Divide the global synchronization into three steps:

1) Local Synchronization

2) Global Synchronization

3) Local Update



Distributed Asynchronous and Selective Optimization - DASO
Local Synchronization

 Traditional synchronization of gradients

 torch.nn.DistributedDataParallel



Distributed Asynchronous and Selective Optimization - DASO
Global Synchronization

 One GPU/node communicates parameters 
with the other nodes

 MPI Groups

 Average operation only occurs within this 
group



Distributed Asynchronous and Selective Optimization - DASO
Local Update

 After averaging, the MPI Group 
member sends it to overwrite the 
network parameters on the other 
GPUs



Distributed Asynchronous and Selective Optimization - DASO
Synchronization Order in Practice

 Warm-up : traditional DPNN training

 Cycling
 delay between sending and receiving global 

parameters
 weighted average for folding in global parameters to 

updated model states

 Cool-down: traditional DPNN training



Distributed Asynchronous and Selective Optimization - DASO
Cycling Phase

 After parameters are sent, GPUs local to one node 
continue to train

 After `S` batches, the global parameters are received

 Weighted average to merge local paramters
 local parameters are doubly weighted

 The number of batches, `S`, between sending and 
receiving parameters cycles by factors of two 
 i.e. 4, 2, 1, 4, 2, 1, ... 



Distributed Asynchronous and Selective Optimization - DASO
Benefits

 Fully utilize computing clusters

 Maintain accuracy at large node counts

 Easy to use / implement



DASO vs Horovod – ImageNet Training with ResNet-50

DASO - Distributed Asynchronous and Selective Optimization



DASO vs Horovod – State-Of-The-Art Model on CityScapes

DASO - Distributed Asynchronous and Selective Optimization



DASO
PyTorch-Style + HPC

 Currently, can you:

 Train a PyTorch NN with a HeAT dataset? ✓
 Use PyTorch functions within training? ✓
 Use the PyTorch Dataloader? ✓
 Train with a dataset which does not fit into the available memory? ✓
 Train a network faster than Horovod? ✓

Bottom Line:
DASO trains a network up to 34% faster than Horovod without losing accuracy.



Come and Feel the HeAT!

 Open source software with the liberal MIT license

 Install it with the PIP package: 
pip install heat

Or join us on GitHub: 
git clone https://github.com/helmholtz-analytics/heat
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Available Features and Ongoing Projects

 Available Currently:

 Mean, Std, Var, Average

 Reshape, flatten, ravel, flip

 Complex numbers

 Matrix multiplication

 Histograms

 K-means + friends

 Spectral clustering

 LASSO

 Data Parallel Neural Networks

 And many more!

Simple, 2 process example

 Ongoing Projects

 ASSET 

 mpi4torch

 SVD

 DPNN improvements and extenstions
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