

TOPIC 3

Matter and Radiation from the Universe

Kathrin Valerius & Christian Stegmann

HELMHOLTZ Helmholtz-Institut Mainz

Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung

www.helmholtz.de

What we want

Understanding the high-energy Universe and its constituents Gamma-ray astronomy A broad but coordinated research program with observatories and in laboratories – a growing field of science Neutrino astronomy Multi-messenger view of the cosmos Cosmic rays High-energy Understand the Universe today Gravitational role of **neutrinos** waves in the Universe Atoms form Stars form 400 000 year 10⁹ years 14 x 10° ye Search for new physics and **Dark** Matter Strong interplay between experiments and theory

Gamma-ray Astronomy

52.00

In the front row at a cosmic explosion

The best view yet of a gamma ray burst (GRB)

An increasing sample of detections

GRB 190114C MAGIC Nature 575 (2019) 455 Nature 575 (2019) 459

GRB 180720B H.E.S.S., Nature 575 (2019) 464 **GRB 190829A** H.E.S.S., Science 372 (2021) 1081

HELMHOLTZ

The Spectrum of GRB 190829A

is challenging theory

- Curiously, the most recent HESS GRB detection is compatible with a continuation of the synchrotron emission beyond the expected supposed theoretical limit
- We are finally starting to probe the very high energy (TeV) gamma-ray emission from GRB, allowing us to start probing the magnetic fields in the source

Neutrino Astronomy

. .

* 42.5*

\$7 ...

1.4

High-energy Neutrinos

in coincidence with the disruption of stars near black holes (TDE)

- The IceCube-191001A-AT2019dsg association represents the first step in the study of high-energy particle emission from TDEs.
- Possible due to the implementation of realtime alert systems (AMPEL)
- + theoretical modelling (W. Winter, C.Lunardini, Nature Astronomy 5, 472 (2021)
- additional candidates under investigation: e.g. IC200530A-AT2019fdr, S. Reusch et al, submitted to PRL <u>https://arxiv.org/abs/2111.09390</u> and van Velzen et al, submitted to Science <u>https://arxiv.org/abs/2111.09391</u>

HELMHOLTZ

Cosmic Rays

Energy spectrum of the highest energy particles

allows an unprecedented view of the Universe at the highest energies

Interpretation of flux and composition data

Topic MU-MRU

Different model scenarios considered for low-energy part (transition to galactic component), similar results for total composition obtained

$$J(E) = \sum_{A} f_A \cdot J_0 \cdot \left(\frac{E}{E_0}\right)^{-\gamma} \cdot \begin{cases} 1, & E < Z_A \cdot R_{\text{cut}};\\ \exp\left(1 - \frac{E}{Z_A \cdot R_{\text{cut}}}\right), & E > Z_A \cdot R_{\text{cut}}. \end{cases}$$

Extragalactic index very hard, but no really good handle on this parameter

hele:
$$\sigma_{sys}(X_{max}) = 6 \div 9 \text{ g cm}^{-2}$$

hele: $\sigma_{sys}(X_{max}) = 6 \div 9 \text{ g cm}^{-2}$
 $\sigma_{sys}^{40} = \frac{1}{25}$
 $\sigma_{sys}^{40} = \frac{1}{15}$
 σ_{s

[g cm⁻²]

700

cm⁻²]

18.0

18.5

18.5

Flux suppression superposition of injection maximum energy and propagation energy losses

(Guido, Auger ICRC 2021)

HELMHOLTZ

19.0

 $\log_{10}(E/eV)$

н

19.0

log (E/eV)

He

19.5

19.5

20.0

20.0

12

KATRIN

A VALUE AND AND A REAL AND A

© KATRIN Coll.

Karlsruhe Tritium Neutrino experiment (KATRIN)

First direct neutrino-mass measurement with sub-eV sensitivity

Topic MU-MRU

Karlsruhe Tritium Neutrino experiment (KATRIN)

Physics program beyond the neutrino mass

- Test of Lorentz invariance violation in weak decays
- Probe of local overdensities of relic neutrinos
- Probe of non-standard neutrino interactions

1st campaign:

Topic MU-MRU

 $\mathcal{E} = \frac{d}{d} = \frac{\Delta}{c} \cdot \frac{c}{dt} = \frac{2}{2} \frac{1}{2} \frac{c}{2} 0$ r-_ V=V1(1+BAE) (n2+n1)2 $\omega = 2\pi f$ tyE f Mero Theory Q Mn 2= 12 K= 41 E.E. 2= 2+1- 1+ = + C C, $f_0 = \frac{M_m}{2\pi |CL|} \quad m_{\phi} = \frac{M_m}{m} = \frac{M_r}{m}$ 2eUme $\Delta t = U_{ef} = \frac{U_m}{\sqrt{2}} h = \frac{1}{2}$ 10-3 HA = Ma. 10-3 P= F BIL - MILIZ $\frac{1}{XL} \int \left[\frac{\Delta \Psi}{D} d\vec{S} = Q^* \right] \frac{\lambda}{NL} = \frac{2\pi \Delta X}{XL} = \frac{2\pi \Delta X}{Tm} = \omega L = 2\pi f L R = \frac{R}{R} = \frac{R}{$ Fire $I_m^2 = U_m^2 \int_{\mathbf{R}^2} \frac{1}{\mathbf{R}^2} + \left(\frac{1}{\mathbf{X}}\right)$ R=Ro 3JA 5.005 2 M6=452 $\phi_e = \frac{L}{4\pi r^2} S l_{\xi} = l_0 (1 + d\Delta t)$ $\frac{dE}{e} = \frac{W_{AB}}{O} = \frac{|E_{PA} - E_{PA}|}{\varphi} = \frac{|f_{A} - f_{B}|}{\varphi} = \frac{1}{2\pi} \frac{f_{B}}{f_{E}}$ Bagh Fa= M2 02 - M2 4022 B= Alc S $\Delta I_{B} t_{g} t_{g} t_{B} = \frac{m_{2}}{m_{A}}$ $V_{k} = \sqrt{R \frac{M_{2}}{R}} F_{x} = \frac{1}{2} C_{x} \rho S J^{2}$ \$ Hal = S(J+ a)).ds $F_{V} = \int \frac{F_{h}}{a} \int pc = \frac{1AU}{AU} E = \frac{E_{c}}{a} \int \frac{f^{+a/L}}{sin(\omega c + \Phi) dy}$ Log I © Jake Whittenicz, Pinterest $A = U_{m} \sin \omega (t-T) = U_{m} \sin 2\pi \left(\frac{t}{T} - \frac{x}{2}\right) E_{m} = \frac{1}{2} m v^{2} = \frac{l_{m_{2}}}{T} = \frac$ E. p. 16----

Theoretical Astroparticle Physics @ KIT

Research highlights:

- Updated global fit of oscillation data Esteban et al. 2007.14792
- Sterile neutrino searches

Coloma, Huber, Schwetz, 2008.06083 Goldhagen et al., 2109.14898 Berryman et al., 21 to appear

- non-standard neutrino properties: non-st. interactions: Chaves, Schwetz, 2102.11981 magn. moment: Schwetz, Zhou, Zhu, 2105.09699 model-independent test for T-violation: Segarra, Schwetz, 2106.16099
- neutrino cosmology vs mass measurements vs relic neutrinos Alvey et al., 21 to appear

Ex.: sensitivity to sterile neutrino mixing from solar neutrino measurements in future Xenon Dark Matter experiments

17

UHECRs and neutrinos from AGN jets

Hypotheses:

- AGN jets (aligned+mis-aligned) describe UHECR data
- Mis-aligned AGN have same properties as AGN blazars
- Injection compositon fixed (roughly Galactic)
- Population model from Ajello et al, 2012+2014:
- Three classes (allowing for different baryonic loadings)
 - LL-BL Lacs •
 - HL-BL Lacs •
 - FSRQs •
- Neutrino production model and spectral energy distribution model based on Rodrigues, Fedynitch, Gao, Boncioli, Winter, ApJ 854 (2018) 54

Conclusion:

2.

- UHECR description driven by LL-BL Lacs because of
 - Low luminosity \rightarrow rigidity-dependent max. energy
 - Negative source evolution r 102 10^{-3} 5-1 °-5 10⁻9 5 10

energies, and may outshine the cosmogenic flux there

Topic MU-MRU

Emission and spectral index maps of supernova remnants

Pion decay (PD)-emission:

- Shell-like morphology throughout all phases and energies
- Faint halo emission

IC-emission:

- Initially shell-like morphology
- Transition to center-filled
- Halo emission already
 after 2kyr

Spectral index distribution:

 No significant deviation from regions of brightest emission

Gamma-ray morphology of SNRs and their halos, Robert Brose, ICRC 2021

-0.8 -0.6 -0.4 -0.2 0.0

0.2 0.4

0.6

0.8

Gravitational Wave Astronomy

Visualization of two merging black holes emitting gravitational waves, Max Planck Institute for Gravitational Physics

Gravitational Wave Astronomy

with the Einstein Telescope

- Many activites in participating centers started, ranging from theory to contributions to the instrument to coordination
- Helmholtz-Roadmap: The FIS Commission recommends the project for full application (2021).
- DZA in Lusatia: The proposed German Center for Astrophysics (DZA) – one of its three pillars dedicated to the Einstein telescope – is among the final 6 proposals for two research centers in Saxony... (https://www.deutscheszentrumastrophysik.de/de)

Thank You!

This presentation was built with input from

M. Ackermann	A. Nelles	M. Steidl
D. Berge	M. Pohl	J. van Santen
S. Blot	M. Roth	W. Winter
A. Haungs	M. Schlösser	
M. Kowalski	Th. Schwetz-Mangold	

based on the work of a dynamic team of motivated people

