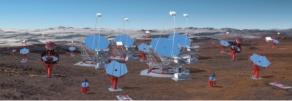
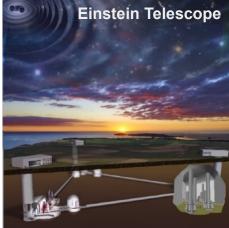


Topic Outlook:

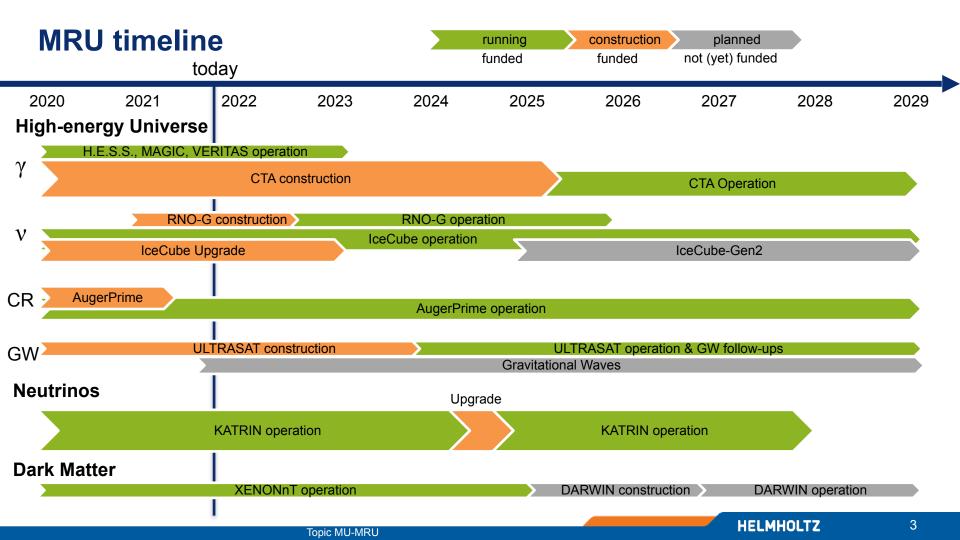
Matter and Radiation from the Universe

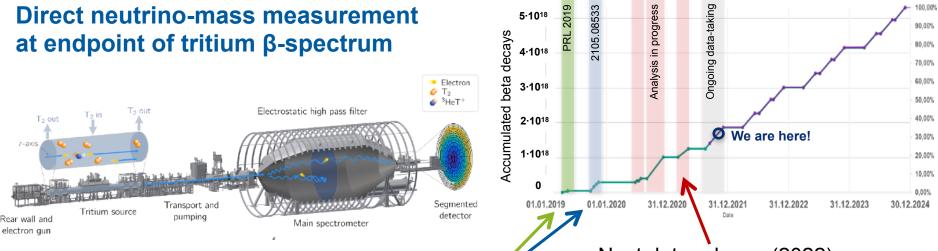

Kathrin Valerius & Christian Stegmann Virtual MU Days, Nov. 24-25, 2021



MRU landscape: developments in PoF IV and beyond

Cherenkov Telescope Array

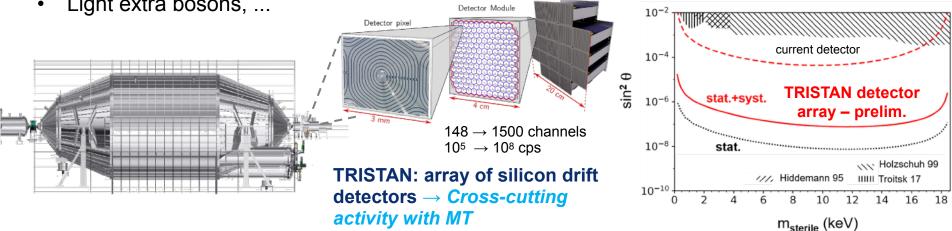



HELMHOLTZ

Topic MU-MRU

2

Karlsruhe Tritium Neutrino Experiment (KATRIN)


- Start of data-taking in 2019, achieved new sub-eV m_v limit with 5% of total anticipated data
- Reliable operation of KATRIN beamline Tritium Laboratory > 200 days / year
- On the way towards goal of $m_v < 0.2 \text{ eV}$ (90% CL)

- Next data release (2022):
 - ~ 20% of total KATRIN data
 - Background reduction by optimized operating conditions
 - Campaigns for improved understanding of systematics

KATRIN 2025-2027

Measurement of full tritium β-decay spectrum with differential readout

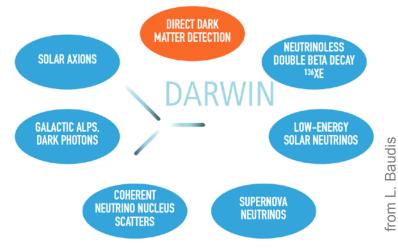
- keV-scale sterile v as "warm" dark matter
- Right-handed current interactions
- Light extra bosons, ...

Further activities:

Exploration of technologies towards $m_{y} < 0.2 \text{ eV/c}^2$

Transfer of KATRIN expertise to other projects (e.g. direct dark matter search)

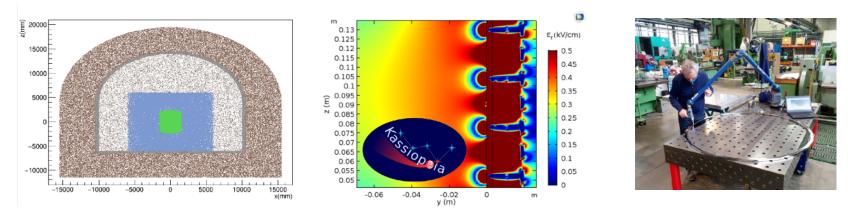
Mertens++, J. Phys. G 46 (2019) 065203


Direct dark matter search

Xenon based two-phase time projection chambers

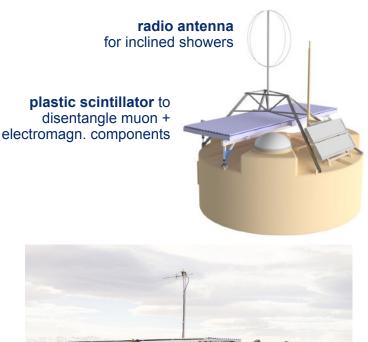
XENONnT at LNGS DARWIN: future observatory for rare-event searches

Timeline: Construction completed in 2020, start of science data in 2021 (5+ yrs) Timeline: Construction/commissioning end of PoF IV, operation through PoF V Goal: 200 t yr exposure


- DARWIN science program: JCAP 11 (2016) 017, EPJ C80 (2020) 808, EPJ C80 (2020) 1133
- APPEC Committee Report, arXiv:2104.07634
- · Community White Paper (3G xenon detector) under way

Direct dark matter search

Current activities towards DARWIN in Helmholtz

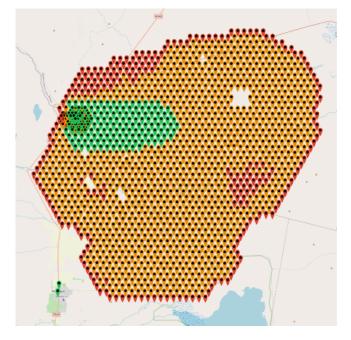

Helmholtz Roadmap: First-stage proposal for FIS commission in preparation for 2022

- Background studies (muons, neutrons, activation)
- Detector development: TPC aspect ratio, field cage design, concepts for large electrodes

- Physics studies (e.g. constraining sterile neutrinos through precision solar neutrino flux, Th. Schwetz, 2109.14898; supernova neutrino detection, trigger and DAQ optimization)
- Further overlap with KATRIN expertise: cryogenics, screening & purification, ...

Exploring the origins of cosmic rays with AugerPrime

Key goal: Composition measurement up to 10²⁰ eV


- Composition-enhanced anisotropy studies
- Improved test of hadronic interactions

Components:

Water Cherenkov Detectors enhanced by

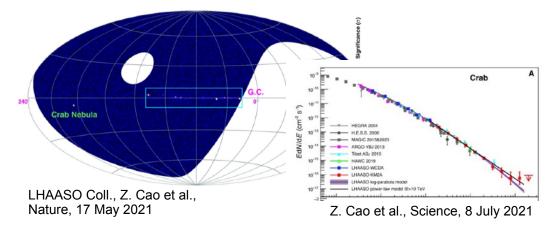
- Surface Scintillation Detector (3.8 m²)
- Radio antenna (for inclined air showers)
- Small PMT (increased dynamic range)
- Electronics upgrade
- + Underground muon-counting array
- + Increased duty cycle of Fluorescence Detectors

Exploring the origins of cosmic rays with AugerPrime

Scintillator deployed + acquiring data

 Deployment of scintillator modules and electronics progressing well, radio antennas to follow

- Upgrade to be completed in 2023
- Renewal of international agreement foreseen to extend operations until 2030
- Community building to prepare for next generation experiment GCOS (beyond 2030), e.g. GCOS workshops and Snowmass process


CTA: The future of gamma-ray astronomy

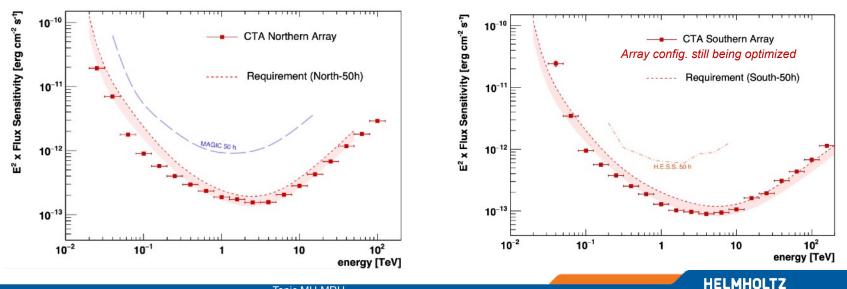
First open observatory in ground-based gamma-ray astronomy

Key aspects of CTA science:

- · excellent sensitivity and
- good angular resolution

for deep surveys and transient follow-up.

Recurrent nova RS Ophiuchi as TeV source. H.E.S.S. ATEL #14844, Aug. 10, 2021


HELMHOLTZ

CTA: The future of gamma-ray astronomy

CTA alpha configuration meets many of the original CTA requirements

- North: 4 LST, 9 MST (Baseline 4 LST, 15 MST)
- South: 14 MST, 37 SST (Baseline 4 LST, 25 MST, 70 SST)

Main deficit: reduction in sky coverage below 50 GeV

CTA: The future of gamma-ray astronomy

Preparations are in full swing:

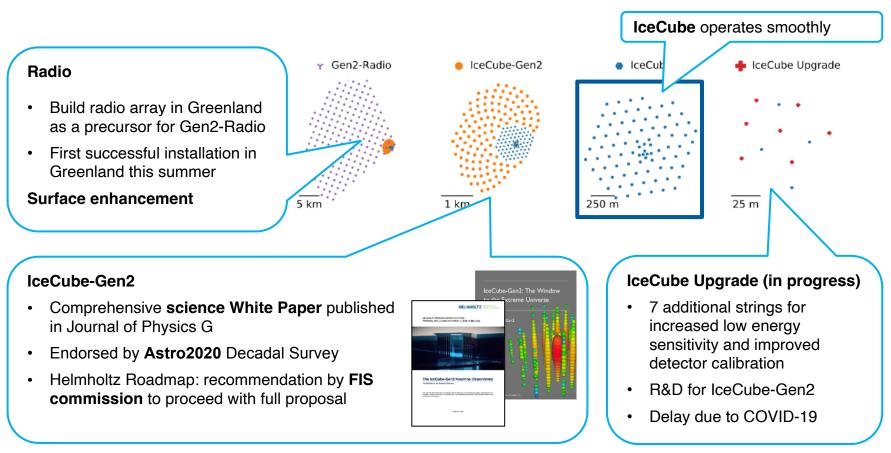
The necessary part

• The foundation of a legal entity to construct and operate the CTA-Observatory expected in 2022

The exciting part

Preparations for the construction of the telescopes are underway

The worries

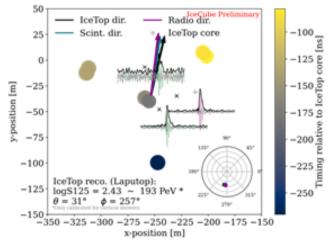

Costs and a volcano...

HELMHOLTZ

IceCube \rightarrow IceCube Upgrade \rightarrow IceCube-Gen2

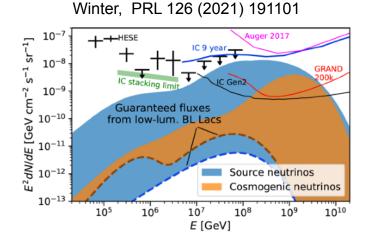
IceCube Surface Array Enhancement

Improving veto & calibration capabilities as well as cosmic-ray & air-shower measurements in the PeV primary energy range


- First hybrid prototype station is in operation at the South Pole
- Hybrid air-showers in coincidence with IceTop measured and analyzed

Detector production at KIT

Prototype station at the South Pole (sunrise in 2019)


High-energy Cosmic Ray measured with the surface array enhancement prototype station

Radio Neutrino Observatory on Greenland (RNO-G)

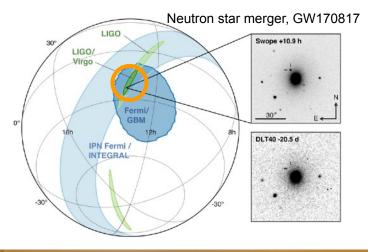
The search for the highest energy neutrinos

Theory: Which neutrino flux dominates at the highest energies? Is it sources or the cosmogenic neutrino flux? Important prediction for future radio neutrino telescopes.

Experiment: Successful installation of the first RNO-G radio detectors on Greenland in the summer of 2021.

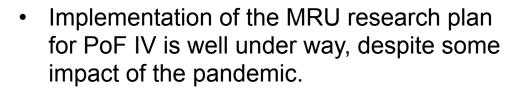
Rodrigues, Heinze, Palladino, van Vliet,

The team


Digging for the surface antennas

ULTRASAT: Ultraviolet Transient Astronomy Satellite

Exploring the dynamic ultraviolet sky


- Large field of view (200 deg²) allows rapid transient follow-up (<3 min) and alerts (<30 min) of the astrophysics community
- Wide-field camera built by DESY passed Critical Design Review in 10/2021
- Launch scheduled for 2024

HELMHOLTZ

Summary note

- Major efforts are ongoing to upgrade existing experiments/observatories.
 Further plans for new large research infrastructures are in place.
- Recent research highlights show us that there is an exciting future ahead!

Thank You!

This presentation was built with input from

M. Ackermann	A. Nelles	M. Steidl
D. Berge	M. Pohl	J. van Santen
S. Blot	M. Roth	W. Winter
A. Haungs	M. Schlösser	
M. Kowalski	Th. Schwetz-Mangold	

based on the work of a dynamic team of motivated people

