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Figure 4: Combined energy spectrum multiplied by ⇢3 together with the fit function (dashed line).

The measurements are combined together into a single estimate of the spectrum through
a forward–folding approach. First, we evaluate uncertainties uncorrelated between methods to
separate them from the common uncertainty in the energy scale, the dominant uncertainty of the
combined spectrum. Uncorrelated uncertainties are crucial for the combination because they serve
as constraints on adjustable shifts in exposure, XE, together with shifts in the energy calibration
parameters of individual SD measurements, X� and X⌫. Along with systematic uncertainties, we
also utilize migration matrices of the individual measurement methods. These matrices describe
the bin–to–bin migration of events between energy bins of true and reconstructed energy, thus
taking into account energy reconstruction resolutions and biases. Using the migration matrices and
measured energy distributions we apply the forward–folding procedure assuming a model for the
energy spectrum that describes the data over the full energy range. This model is a function of a set
of spectral parameters. Their values together with the values of XE, X� and X⌫ that best describe
the numbers of detected events in all data sets are found by maximizing a combined likelihood. The
likelihood is the product of the Poissonian terms, accounting for the di�erence between expected
and measured rates per energy bin, and the Gaussian constraints on exposure and energy. The
method is a generalization of the approach described in [6].

The combined spectrum and the fit function are shown in Fig. 4. The contributing spectra
are found to be in agreement within their uncorrelated systematic uncertainties. At the end of the
maximization, the normalization of Cherenkov and inclined spectra are shifted up by about 7% and
5%, respectively. The 750 m array spectrum normalization is shifted down by 2% while the shifts
for the other two spectra are negligible.

The model for the energy spectrum used in the forward–folding fit is a sequence of six power–
laws with spectral indexes W0, . . . , W5 and five break energies ⇢01, . . . , ⇢45,
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- Flux suppression by factor of 
100 observed


- Many features well established


- Unexpected feature of instep 
(inflection point) at 1.4x1019 eV


- Phase II: further reduction of 
systematics, in particular in 
regions of mixed composition

Extrapolation

Note: A foreground source of protons 
          leads to flux recovery

(Vladimir Novotny)
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Toes
four orders of magnitude in energy

• Composite of 5 different measurements 
(but common energy scale)


• Corrected for the effects of resolution

• Unexpected “instep” inflection point

horizon and zenith at the observatory site to define the local
zenithal and azimuth angles ðθ;φÞ. Alternatively, we can
make use of the fixed equatorial coordinates, right ascen-
sion and declination ðα; δÞ, aligned with the equator and
poles of the Earth, for the same purpose. The wide range of
declinations covered by using events with zenith angles up
to 60°, from δ ¼ −90° to δ ≃þ24.8° (covering 71% of the
sky), allows a search for dependencies of the energy
spectrum on declination. We present below the determi-
nation of the energy spectrum in three declination bands
and discuss the results.
For each declination band under consideration, labelled

as k, the energy spectrum is estimated as

Jik ¼
Nikcik
EkΔEi

; ð10Þ

where Nik and cik stand for the number of events and the
correction factors in the energy bin ΔEi and in the
declination band considered k, and Ek is the exposure
restricted to the declination band k. For this study, the
observed part of the sky is divided into declination bands
with equal exposure, Ek ¼ E=3. The correction factors are
inferred from a forward-folding procedure identical to
that described in Sec. IV, except that the response matrix
is adapted to each declination band (for details see
Appendix C).
The intervals in declination that guarantee that the

exposure of the bands are each E=3 are determined by
integrating the directional exposure function, ωðδÞ, derived
in Appendix E, over the declination so as to satisfy

R δk
δk−1

dδ cos δωðδÞ
R δ3
δ0
dδ cos δωðδÞ

¼ 1

3
; ð11Þ

where δ0 ¼ −π=2 and δ3 ¼ þ24.8°. Numerically, it is
found that δ1 ¼ −42.5° and δ2 ¼ −17.3°.
The resulting spectra (scaled by E3) are shown in the left

panel of Fig. 13. For reference, the best fit of the spectrum
obtained in section IV B is shown as the black line. No
strong dependence of the fluxes on declination is observed.
To examine small differences, a ratio plot is shown in the

right panel by taking the energy spectrum observed in the
whole field of view as the reference. A weighted-average
over wider energy bins is performed to avoid large
statistical fluctuations preventing an accurate visual appre-
ciation. For each energy, the data points are observed to be
in statistical agreement with each other. Note that the same
conclusions hold when analyzing data in terms of integral
intensities, as evidenced for instance in Table IV above
8 × 1018 eV. Similar statistical agreements are found above
other energy thresholds. Hence this analysis provides no
evidence for a strong declination dependence of the energy
spectrum.
A 4.6% first-harmonic variation in the flux in right

ascension has been observed in the energy bins above
8 × 1018 eV shown in the right panel of Fig. 13 [47]. It is
thus worth relating the data points reported here to these
measurements that are interpreted as dipole anisotropies.
The technical details to establish these relationships are
given in Appendix E.

TABLE IV. Integral intensity above 8 × 1018 eV in the three
declination bands considered.

Declination band Integral intensity [km−2 yr−1 sr−1]

−90.0° ≤ δ < −42.5° ð4.17% 0.04Þ × 10−1

−42.5° ≤ δ < −17.3° ð4.11% 0.04Þ × 10−1

−17.3° ≤ δ < þ24.8° ð4.11% 0.04Þ × 10−1
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FIG. 13. Left: Energy spectra in three declination bands of equal exposure. Right: Ratio of the declination-band spectra to that of the
full field-of-view. The horizontal lines show the expectation from the observed dipole [47]. An artificial shift of %5% is applied to the
energies in the x-axis of the northernmost/southernmost declination spectra to make it easier to identify the different data points.
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uncertainty is shown in the right panel of Fig. 2, estimated by shifting the energy assignment in MC
in accordance with the 15% systematic uncertainty in the energy scale.

The energy scale uncertainty of the Cherenkov–dominated data is slightly larger than that
a�ecting showers at higher energies [8], since it also accounts for the uncertainty in the Cherenkov
emission model estimated to be 3% in energy, it includes a contribution related to the invisible
energy model [11], and incorporates 2.5% in energy for half of the maximum reconstruction bias
observed. The energy threshold of 6 PeV accessible by Cherenkov–dominated events is mainly
determined by the systematic uncertainty in exposure at low energies. We report data above an
energy where the uncertainty in exposure matches the uncertainty attributed to the energy scale.
Further details on the analysis of the Cherenkov events will be reported in a dedicated publication.

3. The Auger spectrum and its features

The measurements of the energy spectrum obtained with the 1500 m array using vertical events
[5], inclined events [13], hybrid events, events detected by the 750 m array [6] and the FD events
dominated by Cherenkov light are shown in the left panel of Fig. 3. The analysis and data set used
for the hybrid events is the same as in [13] with the only exception being the improvement in the
estimation of the exposure addressed in the previous section. Also, the data set for the 750 m array
is the same as in [13], but now the analysis benefits from an improved absolute calibration of the
HEAT telescopes and a reassessment of the trigger e�ciency that a�ects the measurements around
the threshold at 1017 eV [6].

For the FD Cherenkov events, in comparison to our previous report [11, 13], the analysis has
been improved in several aspects that have allowed us to lower the energy threshold from 3⇥1016 eV
down to 6 ⇥ 1015 eV, see Section 2.2. The data period was extended to 06/2012–12/2017 resulting
in 123 159 events selected for analysis. The energy spectrum of cosmic rays derived from the
PCGF reconstruction method is depicted in the right panel of Fig. 3, together with systematic
uncertainties. Besides the uncertainties in exposure we also show a major contribution from the
energy scale uncertainty, both are discussed in Section 2.2.
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Figure 3: Intensity of cosmic rays, �, multiplied by ⇢3 estimated using five di�erent techniques (left) and
the energy spectrum deduced from Cherenkov–dominated data (right). In the right plot, the systematic
uncertainty related to exposure is shown by the magenta band, that corresponding to the energy scale by the
blue band, and the total systematic uncertainty by the gray band.
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Figure 1: Exposure of SD and FD measurements to cosmic ray showers as a function of energy (left) and
calibration functions of the SD energy estimators to the energies reconstructed by the FD (right).

1500 m array is covered by a denser array with a spacing of 750 m. Their spacings and areas are
chosen according to the energy ranges probed by the two arrays. Individual SD stations utilize the
water–Cherenkov technique of particle detection, thus they are sensitive to both the electromagnetic
(EM) and muonic components of showers.

The 1500 m array is sensitive to cosmic ray showers with incident zenith angles up to 80�,
but showers with zenith angles above 60� (so-called "inclined" showers) are reconstructed with a
di�erent method [3] to those at lower zenith angles ("vertical" showers) [4, 5]. This is mandatory
because for inclined showers the signal is dominated by muons that are deflected in the geomagnetic
field producing an asymmetric footprint on the ground. For events with zenith angles below 60�,
dominated by EM particles, this e�ect is negligible. The 1500 m array is fully e�cient in the
detection of showers, regardless of the primary mass composition, above 2.5 EeV and 4 EeV in the
case of vertical and inclined reconstruction, respectively.

The array with 750 m spacing is designed to measure at lower energies, and is fully e�cient
from 0.1 EeV, assisted by an additional set of dedicated triggers [6, 7].

The aperture of all SD methods is calculated geometrically by summing the contributions from
individual hexagonal cells under operation. With the use of a monitoring database, we then obtain
the exposure as an integral of the aperture in time. Thus the exposure of SD measurements is
independent of energy and is depicted in the left panel of Fig. 1 for all three SD methods.

The energy estimate for the SD array (⇢SD) is obtained by means of a calibration procedure
based on coincident SD and FD measurements. Events detected by both detectors can be used to
obtain a relation between the SD energy estimator (⌃ in the following) and the FD energy. This is
performed using the calibration function ⇢FD = �⌃⌫, where ⇢FD is the energy obtained with the
FD, and � and ⌫ are calibration parameters.

The energy estimators in the reconstruction of vertical showers are parameters (38 and (35 for
the SD 1500 m and SD 750 m measurements, respectively. These parameters are corrected for the
average shower size attenuation in the atmosphere using the constant intensity cut method [4]. In the
case of inclined reconstruction, the corresponding energy estimator is #19, the scaling factor of the
two dimensional muon density map on the ground used to fit the signal recorded by the SD [3]. The
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Five different measurements

   - all have common energy scale (FD) 

   - four orders of magnitude in E 
   - spectra corrected for resolution effects

   - “Cherenkov” spectrum, following example of TA (PCGF)

“Cherenkov” spectrum, with systematic uncertainties 5
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“Cherenkov” spectrum: 
extension down to 1016 eV

Interpretation of flux and composition data (i)

14

Combined fit of the energy spectrum and mass composition across the ankle Eleonora Guido

different mass groups have small overlap and the composition becomes heavier as the energy
increases. The estimated non-negligible Fe fraction at the sources is actually required only by the
energy spectrum fit, since it contributes at the highest energies where the mass composition data
are not available, as already noted in [17].

3. Effect of the experimental systematic uncertainties

The systematic uncertainties of instrumental origin affect both the energy and the !max mea-
surements. The uncertainty on the energy scale is assumed to be Δ"/" = 14% in the whole
considered energy range [18]. For the !max scale we consider an asymmetric and slightly energy-
dependent uncertainty, ranging from 6 to 9 g cm−2 [13]. An additional systematic effect could also
arise from the uncertainties on the !max resolution and acceptance parameters [13], but we verified
that their impact on the fit results is here negligible.

Δ!max Δ"/" #! #"max #

-14% 52.5 578.3 630.9
−1$syst 0 71.7 595.2 666.9

+14% 64.9 609.3 674.2
-14% 53.5 581.3 634.8

0 0 60.1 554.8 614.9
+14% 70.6 548.8 619.5
-14% 79.1 714.2 793.3

+1$syst 0 80.8 555.4 736.2
+14% 82.4 615.7 698.2

Table 3: The effect on the deviance of the
±1 #syst shifts in the energy and !max scales.

.

Following the same approach used in [2], we take
into account the uncertainty on the energy scale and on
the !max scale by shifting all the measured energies and
!max values by one systematic standard deviation in each
direction. We consider all the possible combinations of
these shifts and their effect on the deviance value is sum-
marised in Tab. 3. The dominant effect in terms of predic-
tions at Earth is the one arising from the !max uncertainty;
as for the estimated best fit parameters, they are not much
modified when the experimental systematic uncertainties
are considered.

The maximal variations on the predicted fluxes at Earth, obtained by considering all the
configurations of Tab. 3, are shown in Fig. 3. The rather large uncertainty on the predicted total
fluxes (brown band) is due to the ±14% shifts in the energy scale, but it significantly affects only

Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the effect on
the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the energies and/or the
!max distributions of 1 #syst in both directions, as shown in Tab. 3. The bands represent the maximal variations induced
by considering all the possible combinations of shifts. The shaded area in the right plot indicates the region where the
!max measurements are grouped in one single energy bin because of the low statistics and thus the mass composition
predictions are mainly driven by the energy spectrum fit.
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are free fit parameters. Our data cannot be described by a Galactic contribution with heavier
mass compositions, e.g. the deviance reaches ∼ 1000 if a composition dominated by silicon is
assumed. In the second scenario we assume only one additional mixed extragalactic component
at low energies, similar to the above-ankle one, but characterised by different physical parameters.
Even if this scenario exhibits a lower deviance, the difference is comparable to the systematic
uncertainties effect illustrated in the next sections; in the future a more detailed investigation of the
assumptions on the Galactic contribution could possibly help to establish a favoured scenario.

In both the scenarios the high-energy (HE) component exhibits a very hard energy spectrum
at the sources, a relatively low maximum rigidity and a mixed mass composition, dominated by
medium-mass nuclei. On the other hand, the additional low-energy (LE) extragalactic component,
either light or mixed, has a very soft energy spectrum and a very high rigidity cutoff, which are also
related to a larger estimated source emissivity with respect to the one of the HE component; the fit
is actually degenerate with respect to !cut for values above ∼ 1019 eV, thus fixing this parameter to
an arbitrarily high value, such as 1024 eV, provides the same best fit results.
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Figure 1: The measured energy spectrum and the estimated best fit results in the scenario with two mixed extragalactic
components. Left: the estimated contributions from the two extragalactic components (red: LE component, blue: HE
component). Right: the partial fluxes related to different nuclear species at the top of atmosphere, grouped according to
their mass number: " = 1 (red), 2 ≤ " ≤ 4 (grey), 5 ≤ " ≤ 22 (green), 23 ≤ " ≤ 38 (cyan), " ≥ 39 (blue).
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Figure 2: The first two moments of the #max distributions in each energy bin along with their expected values and the
predictions for pure compositions of 1H (red), 4He (grey), 14N (green), 28Si (cyan), 56Fe (blue).

In Fig. 1 and in Fig. 2 the best fit results obtained in the scenario with two mixed extragalactic
components are shown with the observed energy spectrum and the first two moments of the measured
#max distributions. The observed mass composition below the ankle is mixed and dominated by
protons and medium-mass nuclei, such as nitrogen. Above the ankle the contributions from the
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assumed. In the second scenario we assume only one additional mixed extragalactic component
at low energies, similar to the above-ankle one, but characterised by different physical parameters.
Even if this scenario exhibits a lower deviance, the difference is comparable to the systematic
uncertainties effect illustrated in the next sections; in the future a more detailed investigation of the
assumptions on the Galactic contribution could possibly help to establish a favoured scenario.
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medium-mass nuclei. On the other hand, the additional low-energy (LE) extragalactic component,
either light or mixed, has a very soft energy spectrum and a very high rigidity cutoff, which are also
related to a larger estimated source emissivity with respect to the one of the HE component; the fit
is actually degenerate with respect to !cut for values above ∼ 1019 eV, thus fixing this parameter to
an arbitrarily high value, such as 1024 eV, provides the same best fit results.
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Figure 2: The first two moments of the #max distributions in each energy bin along with their expected values and the
predictions for pure compositions of 1H (red), 4He (grey), 14N (green), 28Si (cyan), 56Fe (blue).

In Fig. 1 and in Fig. 2 the best fit results obtained in the scenario with two mixed extragalactic
components are shown with the observed energy spectrum and the first two moments of the measured
#max distributions. The observed mass composition below the ankle is mixed and dominated by
protons and medium-mass nuclei, such as nitrogen. Above the ankle the contributions from the
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Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the
effect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the !max distributions of 1 "syst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.

4. Effect of the uncertainties from models

We also investigate the impact on the fit results of changing the propagation models and the
hadronic interaction model. In all the cases we repeat the fit considering different combinations of
propagation models, labelled as ’XY’ according to Tab. 1. The results thus obtained are written in
Tab. 5 and their effect on the predicted fluxes at Earth is shown in Fig. 4.

As concerns the hadronic interaction model, we verified that QGSJetIIv4 cannot properly
describe our data and is thus excluded from this analysis. Since we want to keep open the option
that our data are better described by an intermediate model between EPOS-LHC and Sibyll2.3d
instead of exactly one of them, we introduce an additional nuisance parameter #HIM, limited
between 0 and 1, which defines the value of each HIM-dependent Gumbel parameter as $ =
#HIM · $EPOS + (1 − #HIM) · $Sibyll. The introduction of #HIM leads to an additional deviance term
%HIM = (#HIM − 0.5)2/(0.5)2.

TG PG TD PD
LE HE LE HE LE HE LE HE

! 3.49 ± 0.02 −1.98 ± 0.10 3.48 ± 0.04 −1.9 ± 0.2 3.66 ± 0.05 −0.93 ± 0.09 3.51 ± 0.06 −0.86 ± 0.10
log10 ("cut/V) 24 (lim.) 18.16 ± 0.01 24 (lim.) 18.16 ± 0.02 18.04 ± 0.04 18.23 ± 0.01 17.95 ± 0.06 18.21 ± 0.01
#H (%) 49.87 $ (10−7) 49.39 0.44 44.17 0.38 40.85 $ (10−9)
#He (%) 10.92 28.60 14.52 49.29 7.45 20.21 14.64 47.99
#N (%) 36.25 69.05 33.28 43.84 45.17 73.80 39.57 38.29
#Si (%) $ (10−6) 7.32 $ (10−7) 4.64 $ (10−5) 2.91 $ (10−6) 11.15
#Fe (%) 2.96 2.35 2.80 1.78 3.21 2.69 4.94 2.58
%HIM 1.0 (lim.) 0.94 ± 0.17 0.92 ± 0.15 0.86 ± 0.13
&HIM 1.0 0.78 0.69 0.52
&! ('! ) 60.1 (24) 51.9 (24) 44.3 (24) 51.7 (24)
&"max ('"max ) 555.8 (329) 564.8 (329) 587.5 (329) 593.2 (329)
&tot (' ) 615.9 (353) 616.7 (353) 631.8 (353) 645.0 (353)

Table 5: Best fit results obtained by using different combinations of propagation models. The uncertainty
due to the hadronic interaction model choice is considered by fitting the nuisance parameter #HIM.

For all the considered combinations of propagation models our data appear to be better described
by either EPOS-LHC or intermediate models compatible with it. The lowest deviance is obtained in
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Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the
effect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the !max distributions of 1 "syst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.
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Figure 4: Left: the effect of the uncertainties from models on the energy spectrum. Right: the effect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.

5. Source evolution

All the results presented in the previous sections are obtained by assuming no cosmolog-
ical evolution for the populations of extragalactic sources. We perform the fit also assuming
three different evolution scenarios: we consider a SF-like [18] evolution, an AGN-like one [19],
which have a positive source evolution for ! < 1 (" = 3.5 and " = 5, respectively), and a
TDE-like evolution with " = −3 for small ! [20]. Since there is no physical reasons to as-
sume that the two populations of sources have the same cosmological evolution, all the possible
combinations are considered and the results in terms of total deviance are summarised in Fig. 5.

Figure 5: Deviance as a function of the
cosmological evolution of the two popula-
tions.

In the case of the LE component, a positive (negative) evolu-
tion produces a hardening (softening) of the energy spectrum
at the sources to compensate the larger amount of low (high)
energy particles. As for the HE component, the cosmologi-
cal evolution effect is balanced by the interplay between the
modification of the energy spectrum at the sources and/or the
adjustment of the rigidity cutoff of the LE component. If the
HE population has a strong positive evolution (e.g. " = 5), the
hardening of the energy spectrum at the sources is not enough
to compensate the increased amount of low-energy particles,
hence the LE component is suppressed below ∼ 1018 eV to
attempt the description of the whole energy range with the HE component alone; the deviances are
very high, so that such scenarios are excluded by our data at high significance. In all the other
scenarios, the impact on the fit results is within the systematic uncertainties effect, so it is more
difficult to draw a conclusion about a favoured configuration. However, when we consider the values
" = 0, 3.5 for the HE component and " = −3, 0 for the LE one, we obtain the lowest deviances.

6. Conclusions

In this study we performed a combined fit of the energy spectrum and mass composition data
from ∼ 6 · 1017 eV. The region above the ankle is described by an extragalactic component ejected
at the sources with a very hard energy spectrum (# < 0), a rather low rigidity cutoff and a mass
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Figure 4: Left: the effect of the uncertainties from models on the energy spectrum. Right: the effect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.
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6. Conclusions

In this study we performed a combined fit of the energy spectrum and mass composition data
from ∼ 6 · 1017 eV. The region above the ankle is described by an extragalactic component ejected
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Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the
effect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the !max distributions of 1 "syst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.

4. Effect of the uncertainties from models

We also investigate the impact on the fit results of changing the propagation models and the
hadronic interaction model. In all the cases we repeat the fit considering different combinations of
propagation models, labelled as ’XY’ according to Tab. 1. The results thus obtained are written in
Tab. 5 and their effect on the predicted fluxes at Earth is shown in Fig. 4.

As concerns the hadronic interaction model, we verified that QGSJetIIv4 cannot properly
describe our data and is thus excluded from this analysis. Since we want to keep open the option
that our data are better described by an intermediate model between EPOS-LHC and Sibyll2.3d
instead of exactly one of them, we introduce an additional nuisance parameter #HIM, limited
between 0 and 1, which defines the value of each HIM-dependent Gumbel parameter as $ =
#HIM · $EPOS + (1 − #HIM) · $Sibyll. The introduction of #HIM leads to an additional deviance term
%HIM = (#HIM − 0.5)2/(0.5)2.

TG PG TD PD
LE HE LE HE LE HE LE HE

! 3.49 ± 0.02 −1.98 ± 0.10 3.48 ± 0.04 −1.9 ± 0.2 3.66 ± 0.05 −0.93 ± 0.09 3.51 ± 0.06 −0.86 ± 0.10
log10 ("cut/V) 24 (lim.) 18.16 ± 0.01 24 (lim.) 18.16 ± 0.02 18.04 ± 0.04 18.23 ± 0.01 17.95 ± 0.06 18.21 ± 0.01
#H (%) 49.87 $ (10−7) 49.39 0.44 44.17 0.38 40.85 $ (10−9)
#He (%) 10.92 28.60 14.52 49.29 7.45 20.21 14.64 47.99
#N (%) 36.25 69.05 33.28 43.84 45.17 73.80 39.57 38.29
#Si (%) $ (10−6) 7.32 $ (10−7) 4.64 $ (10−5) 2.91 $ (10−6) 11.15
#Fe (%) 2.96 2.35 2.80 1.78 3.21 2.69 4.94 2.58
%HIM 1.0 (lim.) 0.94 ± 0.17 0.92 ± 0.15 0.86 ± 0.13
&HIM 1.0 0.78 0.69 0.52
&! ('! ) 60.1 (24) 51.9 (24) 44.3 (24) 51.7 (24)
&"max ('"max ) 555.8 (329) 564.8 (329) 587.5 (329) 593.2 (329)
&tot (' ) 615.9 (353) 616.7 (353) 631.8 (353) 645.0 (353)

Table 5: Best fit results obtained by using different combinations of propagation models. The uncertainty
due to the hadronic interaction model choice is considered by fitting the nuisance parameter #HIM.

For all the considered combinations of propagation models our data appear to be better described
by either EPOS-LHC or intermediate models compatible with it. The lowest deviance is obtained in
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Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the
effect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the !max distributions of 1 "syst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.
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Figure 4: Left: the effect of the uncertainties from models on the energy spectrum. Right: the effect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.

5. Source evolution

All the results presented in the previous sections are obtained by assuming no cosmolog-
ical evolution for the populations of extragalactic sources. We perform the fit also assuming
three different evolution scenarios: we consider a SF-like [18] evolution, an AGN-like one [19],
which have a positive source evolution for ! < 1 (" = 3.5 and " = 5, respectively), and a
TDE-like evolution with " = −3 for small ! [20]. Since there is no physical reasons to as-
sume that the two populations of sources have the same cosmological evolution, all the possible
combinations are considered and the results in terms of total deviance are summarised in Fig. 5.
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In the case of the LE component, a positive (negative) evolu-
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at the sources to compensate the larger amount of low (high)
energy particles. As for the HE component, the cosmologi-
cal evolution effect is balanced by the interplay between the
modification of the energy spectrum at the sources and/or the
adjustment of the rigidity cutoff of the LE component. If the
HE population has a strong positive evolution (e.g. " = 5), the
hardening of the energy spectrum at the sources is not enough
to compensate the increased amount of low-energy particles,
hence the LE component is suppressed below ∼ 1018 eV to
attempt the description of the whole energy range with the HE component alone; the deviances are
very high, so that such scenarios are excluded by our data at high significance. In all the other
scenarios, the impact on the fit results is within the systematic uncertainties effect, so it is more
difficult to draw a conclusion about a favoured configuration. However, when we consider the values
" = 0, 3.5 for the HE component and " = −3, 0 for the LE one, we obtain the lowest deviances.

6. Conclusions

In this study we performed a combined fit of the energy spectrum and mass composition data
from ∼ 6 · 1017 eV. The region above the ankle is described by an extragalactic component ejected
at the sources with a very hard energy spectrum (# < 0), a rather low rigidity cutoff and a mass

7

Combined fit of the energy spectrum and mass composition across the ankle Eleonora Guido

Figure 4: Left: the effect of the uncertainties from models on the energy spectrum. Right: the effect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.
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1. Introduction

The existence of ultra-high-energy cosmic rays (UHECRs), the ones reaching Earth with
energies above ∼ 1018 eV, was proven in the early 1960s and recent measurements point to a
predominant flux component of extragalactic origin at these energies [1]. In the still open quest for
the sources of these particles, the large ground-based experiments built in the last few decades, like
the Pierre Auger Observatory, have been helping in shedding light on such open questions.

In this analysis we simultaneously fit a simple astrophysical model to both the energy spectrum
and the mass composition data measured at the Pierre Auger Observatory, considering energies
from 1017.8 eV to include the region across the ankle. At this first stage, the effects of the potentially
relevant interactions occurring in the acceleration sites are not considered, limiting the study to
constrain the physical parameters related to the energy spectrum and the mass composition of
particles escaping the environments of extragalactic sources. In a previous publication [2], a model
consisting of one single population of extragalactic sources was fitted to the data above the ankle
(! > 1018.7 eV). Here, since we want to interpret also the ankle region, we assume the presence of
one (or more) additional contribution(s) at low energies, so that the ankle feature results from the
superposition of different components. Each extragalactic component originates from a population
of identical sources, uniformly distributed in the comoving volume except for a local overdensity
for distances smaller than ∼ 30 Mpc. The overdensity is considered as a cluster centred around
our Galaxy, following [3], which provides a good approximation to nearby densities if compared
to the distributions of stellar mass and star formation (SF) rate over the full sky illustrated in [4].
Each component is given by the superposition of the contributions of " ≤ 5 representative nuclear
species #, chosen among 1H, 4He, 14N, 28Si, 56Fe, ejected according to a power-law spectrum with
a rigidity-dependent broken exponential cutoff:

$ (!) =
∑
!

%! · $0 ·
(
!

!0

)−"
·



1, ! < &! · 'cut;
exp

(
1 − #

$! ·%cut

)
, ! > &! · 'cut.

(1)

where $0 is the normalisation factor, &! is the atomic number of each species # and %! is the
fraction of # at the energy !0 = 1017.5 eV.

&pd Talys [6], PSB [7] XYZ
EBL Gilmore [8], Dominguez [9] XYZ
HIM EPOS-LHC [10], Sibyll2.3d [11], QGSJetIIv4 [12] XYZ

Table 1: The propagation models used in this analysis. The
bold letters define the label ’XYZ’. For instance, ‘TGE’ stands for
Talys, Glimore and EPOS-LHC models.

The energy spectrum and mass com-
position of the particles escaping from the
sources are modified during the propaga-
tion in the intergalactic medium (IGM) by
the adiabatic energy losses and the interac-
tions with background photons. We take
into account these effects by using SimProp [5] simulations, where the uncertain quantities, i.e.
the photodisintegration cross sections (pd and the EBL spectrum, are treated with phenomenolog-
ical models. Besides, since a direct measurement of the mass composition is not possible on an
event-by-event basis, we use the distribution of )max as an estimator of the mass distribution in each
energy bin. The conversion to the mass distribution depends on the chosen hadronic interaction
model (HIM), which is thus another source of uncertainty. The various propagation models used in
this analysis are shown in Tab. 1. We choose the configuration labelled as “TGE” as our reference
and the impact of the models on the fit results will be discussed in Sec. 4.
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⇢ (EeV) # 3? 3I 3 U3 [�] X3 [�] P(� AU1 )
4-8 106, 290 0.01+0.006

�0.004 �0.012 ± 0.008 0.016+0.008
�0.005 97 ± 29 �48+23

�22 1.4 ⇥ 10�1

8-16 32, 794 0.055+0.011
�0.009 �0.03 ± 0.01 0.063+0.013

�0.009 95 ± 10 �28+12
�13 3.1 ⇥ 10�7

16-32 9, 156 0.072+0.021
�0.016 �0.07 ± 0.03 0.10+0.03

�0.02 81 ± 15 �43+14
�14 7.5 ⇥ 10�4

�8 44, 398 0.059+0.009
�0.008 �0.042 ± 0.013 0.073+0.011

�0.009 95 ± 8 �36+9
�9 5.1 ⇥ 10�11

�32 2, 448 0.11+0.04
�0.03 �0.12 ± 0.05 0.16+0.05

�0.04 139 ± 19 �47+16
�15 1.0 ⇥ 10�2

Table 1: 3D dipole reconstruction. Shown are the number of events # , dipole components in the equatorial
plane 3? and along the rotation axis of the Earth 3I , the total 3D amplitude 3, dipole direction (U3 , X3) and
the probability to get a larger amplitude of AU1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45� radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45� radius is presented in the right panel of the same figure
in equatorial coordinates. The dipole direction points ⇠ 115� away from the direction of the
Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous
publications [6, 7].

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The
evolution can be described as done in [6] by 3 = 310(⇢/10 EeV)V with 310 = 0.050 ± 0.007 and
V = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the di�erent energy bins
is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per
unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of
the dipole direction as a function of energy considering the present accuracy. The growth of the
dipole amplitude as a function of energy can be a consequence of the larger relative contribution
from nearby sources to the flux at higher energies with respect to the integrated flux from the
more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources
at larges distances is expected to result from the interaction of UHECRs with the background
radiation [19, 20]. Interpretation of the reconstructed dipole directions for the di�erent energy
bins requires taking into account the magnetic deflections of the particles during their trajectory
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Figure 2: Left panel: Energy dependence of the dipolar amplitude measured above 4 EeV. Right panel:
Reconstructed dipole directions in di�erent energy bins and corresponding 68% C.L. uncertainty, in Galactic
coordinates. The dots indicate the positions of 2MRS galaxies within 100 Mpc.

from the sources up to Earth, being a di�cult task because of our still uncertain knowledge about
cosmic ray composition and Galactic and extragalactic magnetic fields. Nevertheless, by using a
detailed large scale structure matter density field [21] derived from the CosmicFlows-2 catalog of
peculiar velocities [22], an estimation of the magnitude, direction and energy dependence of the
dipolar anisotropy as a function of energy was obtained by performing a combined fit of the dipole
components and cosmic ray composition [23].

Allowing for the presence of a quadrupole, the reconstructed dipolar and quadrupolar com-
ponents of the flux for all energy bins were obtained as in [9] and reported in Table 2. The five
independent quadrupolar components are not significant in any of the energy bins.

3.2 Angular Power Spectrum

The angular distribution �(n) of cosmic rays observed by an experiment in some direction n

can be decomposed by separating the dominant monopole contribution from the anisotropic one,
�(n), as

�(n) = #

4c 51
, (n) [1 + �(n)] , (3)

where , (n) is the relative coverage of the observatory, 51 =
Ø
3n , (n)/4c the fraction of

the sky e�ectively covered by the observatory and # the total number of observed cosmic rays.
Unfortunately, due to the partial sky coverage of the observatory, the estimation of the individual
0✓< coe�cients of the spherical harmonic expansion of �(n), and its angular power spectrum
⇠✓ =

Õ
✓

<=�✓ |0✓< |2/(2✓ + 1), cannot be carried out with relevant resolution as soon as ✓<0G >

2. However, one can make additional assumptions2 about the ensemble-averaged expectation
values of the multipole components [24] and it is possible to recover the angular power spectrum
coe�cients. In this situation, the pseudo-power spectrum ⇠̃✓ =

Õ
✓

<=�✓ |0̃✓< |2/(2✓ + 1) (which
is directly measurable, obtained from 0̃✓< =

Ø
3n , (n)�(n).✓<(n)) is related to the real power

spectrum through

⇠̃✓ =
’
✓
0
"✓✓

0⇠✓
0 . (4)

2For a more detailed discussion about these assumptions see [25].
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−0.005 97 ± 29 −48+23

−22 1.4 × 10−1

8-16 32, 794 0.055+0.011
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−13 3.1 × 10−7
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−0.02 81 ± 15 −43+14
−14 7.5 × 10−4
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−0.009 95 ± 8 −36+9
−9 5.1 × 10−11
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Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
the probability to get a larger amplitude of &#1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.
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Figure 1. Left above: The density field of the local universe derived from CosmicFlow-2 (Hoffman et al. 2018) in Super-
galactic coordinates; a 3D interactive view is available at [https://sketchfab.com/3d-models/quasi-linear-construction-of-the-density-field-
91448f58ed5b4a30b5dc270a34fb4352] Left below: The intensity map of the flux illuminating the Galaxy ≥ 8 EeV, for sources following
the CosmicFlow-2 density field using the Eq. 1, “d90”, treatment; the pattern is virtually identical for the sharp-horizon treatment, but with
maximum relative flux =1.47 instead of 1.67 as in “d90”. The direction of the dipole component is not far from the CMB dipole. Right panels:
The colored lines are the percentage contribution to the observed UHECR flux coming from the indicated distance bins, as a function of energy,
for the parameters of the best-fitting d90 (above) and sharp-horizon SH* (below) models detailed in Table 1. The dots represent the average
over the energy bin indicated at the top. The actual calculation uses 1 Mpc bins in distance and 0.1 bins in log10(E).

discussed in Table 1; the meaning should be clear in context.)
Even if the source spectrum were known, Eq. 1 is not an ex-
act description because the energy loss rate evolves during
evolution as the composition and energy change. Moreover
the d90(A, E) values available in the literature are integrated
above a threshold rather than applying to a bin of energy.
A future more accurate treatment needs to take this into ac-
count as well as taking the source spectrum as an unknown
to be self-consistently fit.

We explore the possible spreading of the source images
and reduction in horizon due to diffusion in the EGMF, us-
ing the sharp-horizon treatment. We adopt the simplest hy-
pothesis that the universe is filled with homogeneous and
isotropic turbulent magnetic fields. While the turbulence
level of the EGMF is still unknown, upper limits obtained by
various measurements or arguments exist (Durrer & Neronov
2013). We adopt a Kolmogorov spectrum and – to fully

cover the possible parameter space – we consider rms ran-
dom field strength 0.08 ≤ BEG ≤ 10 nG and coherence
length 0.08 ≤ λEG ≤ 0.5 Mpc. The diffusion coefficient,
DEG, and indeed all magnetic deflections, depends on rigid-
ity, E/Z; in the relevant rigidity domain, DEG is proportional
to
(
E/ZBEGλ0.5

EG

)2
(Globus et al. 2008). The intensity profile

of a single source depends on the diffusion coefficient and on
the distance to the source; it is calculated by a method fol-
lowing the diffusion of light in scattering media, that allows
to take into account the transition between quasi-linear and
diffusive regimes, as detailed in Appendix A.

For a given assumed EGMF, composition and energy, and
adopting either the sharp-horizon or d90 attenuation, we cal-
culate the weight of a 1-Mpc-thick shell of matter at dis-
tance z in the total observed CR flux at the given (A, E). The
final illumination map for that (A, E) and attenuation model
is then the weighted sum of the surface mass density in each

Fundamental observation: 
non-trivial interplay of 
- mass composition, 
- magnetic horizon and 
- local source distribution

(Ding, Globus & Farrar 2101.04564) (Harari, Mollerach, Roulet PRD92 (2015) 06314)

6.6 σ

p ∼ 5×10−11
Exposure until end of 2020 (θ < 80°): 110,000 km2 sr yr
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Figure 6. Comparison of the dipole amplitude as a function of energy with predictions from models (Harari et al. 2015) with
mixed composition and a source density ρ = 10−4 Mpc−3. Cosmic rays are propagated in an isotropic turbulent extragalactic
magnetic field with rms amplitude of 1 nG and a Kolmogorov spectrum with coherence length equal to 1 Mpc (with the results
having only mild dependence on the magnetic-field strength adopted). The gray line indicates the mean value for simulations
with uniformly distributed sources, while the blue one shows the mean value for realizations with sources distributed as the
galaxies in the 2MRS catalog. The bands represent the dispersion for different realizations of the source distribution. The steps
observed reflect the rigidity cutoff of the different mass components.

Regarding the possible origin of the dipolar CR anisotropy, we note that the relative motion of the observer with
respect to the rest frame of cosmic rays is expected to give rise to a dipolar modulation of the flux, known as the
Compton–Getting effect (Compton & Getting 1935). For particles with a power-law energy spectrum dΦ/dE ∝ E−γ ,
the resulting dipolar amplitude is dCG = (v/c)(γ + 2), with v/c the velocity of the observer normalized to the speed
of light. In particular, if the rest frame of the cosmic rays were the same as that of the cosmic microwave background,
the dipole amplitude would be dCG " 0.006 (Kachelriess & Serpico 2006), an order of magnitude smaller than the
observed dipole above 8 EeV. Thus, the Compton–Getting effect is predicted to give only a sub-dominant contribution
to the dipole measured for energies above 8 EeV.
Plausible explanations for the observed dipolar-like distribution include the diffusive propagation from the closest

extragalactic source(s) or that it be due to the inhomogeneous distribution of the sources in our cosmic neighborhood
(Giler et al. 1980; Berezinsky et al. 1990; Harari et al. 2014, 2015). The expected amplitude of the resulting dipole
depends in these cases mostly on the number density of the source distribution, ρ, with only a mild dependence on the
amplitude of the extragalactic magnetic field. For homogeneous source distributions with ρ ∼ (10−5 − 10−3) Mpc−3,
spanning the range between densities of galaxy clusters, jetted radio-galaxies, Seyfert galaxies and starburst galaxies,
the dipole amplitude turns out to be at the level of few percent at E ∼ 10 EeV, both for scenarios with light (Harari
et al. 2014) and with mixed CR compositions (Harari et al. 2015). A density of sources smaller by a factor of ten leads
on average to a dipolar amplitude larger by approximately a factor of two. An enhanced anisotropy could result if the
sources were to follow the inhomogeneous distribution of the local galaxies, with a dipole amplitude larger by a factor
of about two with respect to the case of a uniform distribution of the same source density. The expected behavior is
exemplified in Figure 6 where we have included the observed dipole amplitude values together with the predictions
from Harari et al. (2015) for a scenario with five representative mass components (H, He, C, Si and Fe) having an E−2

spectrum with a sharp rigidity cutoff at 6 EV and adopting a source density ρ = 10−4 Mpc−3 (ignoring the effects of
the Galactic magnetic field). The data show indications of a growth in the amplitude with increasing energy that is
similar to the one obtained in the models. Note that this kind of scenario is also in line with the composition favored
by Pierre Auger Observatory data (The Pierre Auger Collaboration 2017c).
Regarding the direction of the dipolar modulation, it is important to take into account the effect of the Galactic

magnetic field on the trajectories of extragalactic cosmic rays reaching the Earth.4 The facts that the Galactic magnetic

4 These deflections can not only lead to a significant change in the dipole direction and in its amplitude, but they also generate some
higher order harmonics even if pure dipolar modulation is only present outside the Galaxy (Harari et al. 2010).
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Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85
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The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87
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dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95
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bins requires taking into account the magnetic deflections of the particles during their trajectory98
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! (EeV) " #⊥ #! # $" [◦] %" [◦] P(≥ &#1 )
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Figure 1. Left above: The density field of the local universe derived from CosmicFlow-2 (Hoffman et al. 2018) in Super-
galactic coordinates; a 3D interactive view is available at [https://sketchfab.com/3d-models/quasi-linear-construction-of-the-density-field-
91448f58ed5b4a30b5dc270a34fb4352] Left below: The intensity map of the flux illuminating the Galaxy ≥ 8 EeV, for sources following
the CosmicFlow-2 density field using the Eq. 1, “d90”, treatment; the pattern is virtually identical for the sharp-horizon treatment, but with
maximum relative flux =1.47 instead of 1.67 as in “d90”. The direction of the dipole component is not far from the CMB dipole. Right panels:
The colored lines are the percentage contribution to the observed UHECR flux coming from the indicated distance bins, as a function of energy,
for the parameters of the best-fitting d90 (above) and sharp-horizon SH* (below) models detailed in Table 1. The dots represent the average
over the energy bin indicated at the top. The actual calculation uses 1 Mpc bins in distance and 0.1 bins in log10(E).

discussed in Table 1; the meaning should be clear in context.)
Even if the source spectrum were known, Eq. 1 is not an ex-
act description because the energy loss rate evolves during
evolution as the composition and energy change. Moreover
the d90(A, E) values available in the literature are integrated
above a threshold rather than applying to a bin of energy.
A future more accurate treatment needs to take this into ac-
count as well as taking the source spectrum as an unknown
to be self-consistently fit.

We explore the possible spreading of the source images
and reduction in horizon due to diffusion in the EGMF, us-
ing the sharp-horizon treatment. We adopt the simplest hy-
pothesis that the universe is filled with homogeneous and
isotropic turbulent magnetic fields. While the turbulence
level of the EGMF is still unknown, upper limits obtained by
various measurements or arguments exist (Durrer & Neronov
2013). We adopt a Kolmogorov spectrum and – to fully

cover the possible parameter space – we consider rms ran-
dom field strength 0.08 ≤ BEG ≤ 10 nG and coherence
length 0.08 ≤ λEG ≤ 0.5 Mpc. The diffusion coefficient,
DEG, and indeed all magnetic deflections, depends on rigid-
ity, E/Z; in the relevant rigidity domain, DEG is proportional
to
(
E/ZBEGλ0.5

EG

)2
(Globus et al. 2008). The intensity profile

of a single source depends on the diffusion coefficient and on
the distance to the source; it is calculated by a method fol-
lowing the diffusion of light in scattering media, that allows
to take into account the transition between quasi-linear and
diffusive regimes, as detailed in Appendix A.

For a given assumed EGMF, composition and energy, and
adopting either the sharp-horizon or d90 attenuation, we cal-
culate the weight of a 1-Mpc-thick shell of matter at dis-
tance z in the total observed CR flux at the given (A, E). The
final illumination map for that (A, E) and attenuation model
is then the weighted sum of the surface mass density in each

Fundamental observation: 
non-trivial interplay of 
- mass composition, 
- magnetic horizon and 
- local source distribution

(Ding, Globus & Farrar 2101.04564) (Harari, Mollerach, Roulet PRD92 (2015) 06314)
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Figure 6. Comparison of the dipole amplitude as a function of energy with predictions from models (Harari et al. 2015) with
mixed composition and a source density ρ = 10−4 Mpc−3. Cosmic rays are propagated in an isotropic turbulent extragalactic
magnetic field with rms amplitude of 1 nG and a Kolmogorov spectrum with coherence length equal to 1 Mpc (with the results
having only mild dependence on the magnetic-field strength adopted). The gray line indicates the mean value for simulations
with uniformly distributed sources, while the blue one shows the mean value for realizations with sources distributed as the
galaxies in the 2MRS catalog. The bands represent the dispersion for different realizations of the source distribution. The steps
observed reflect the rigidity cutoff of the different mass components.

Regarding the possible origin of the dipolar CR anisotropy, we note that the relative motion of the observer with
respect to the rest frame of cosmic rays is expected to give rise to a dipolar modulation of the flux, known as the
Compton–Getting effect (Compton & Getting 1935). For particles with a power-law energy spectrum dΦ/dE ∝ E−γ ,
the resulting dipolar amplitude is dCG = (v/c)(γ + 2), with v/c the velocity of the observer normalized to the speed
of light. In particular, if the rest frame of the cosmic rays were the same as that of the cosmic microwave background,
the dipole amplitude would be dCG " 0.006 (Kachelriess & Serpico 2006), an order of magnitude smaller than the
observed dipole above 8 EeV. Thus, the Compton–Getting effect is predicted to give only a sub-dominant contribution
to the dipole measured for energies above 8 EeV.
Plausible explanations for the observed dipolar-like distribution include the diffusive propagation from the closest

extragalactic source(s) or that it be due to the inhomogeneous distribution of the sources in our cosmic neighborhood
(Giler et al. 1980; Berezinsky et al. 1990; Harari et al. 2014, 2015). The expected amplitude of the resulting dipole
depends in these cases mostly on the number density of the source distribution, ρ, with only a mild dependence on the
amplitude of the extragalactic magnetic field. For homogeneous source distributions with ρ ∼ (10−5 − 10−3) Mpc−3,
spanning the range between densities of galaxy clusters, jetted radio-galaxies, Seyfert galaxies and starburst galaxies,
the dipole amplitude turns out to be at the level of few percent at E ∼ 10 EeV, both for scenarios with light (Harari
et al. 2014) and with mixed CR compositions (Harari et al. 2015). A density of sources smaller by a factor of ten leads
on average to a dipolar amplitude larger by approximately a factor of two. An enhanced anisotropy could result if the
sources were to follow the inhomogeneous distribution of the local galaxies, with a dipole amplitude larger by a factor
of about two with respect to the case of a uniform distribution of the same source density. The expected behavior is
exemplified in Figure 6 where we have included the observed dipole amplitude values together with the predictions
from Harari et al. (2015) for a scenario with five representative mass components (H, He, C, Si and Fe) having an E−2

spectrum with a sharp rigidity cutoff at 6 EV and adopting a source density ρ = 10−4 Mpc−3 (ignoring the effects of
the Galactic magnetic field). The data show indications of a growth in the amplitude with increasing energy that is
similar to the one obtained in the models. Note that this kind of scenario is also in line with the composition favored
by Pierre Auger Observatory data (The Pierre Auger Collaboration 2017c).
Regarding the direction of the dipolar modulation, it is important to take into account the effect of the Galactic

magnetic field on the trajectories of extragalactic cosmic rays reaching the Earth.4 The facts that the Galactic magnetic

4 These deflections can not only lead to a significant change in the dipole direction and in its amplitude, but they also generate some
higher order harmonics even if pure dipolar modulation is only present outside the Galaxy (Harari et al. 2010).
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Combined fit of the energy spectrum and mass composition across the ankle Eleonora Guido

1. Introduction

The existence of ultra-high-energy cosmic rays (UHECRs), the ones reaching Earth with
energies above ⇠ 1018 eV, was proven in the early 1960s and recent measurements point to a
predominant flux component of extragalactic origin at these energies [1]. In the still open quest for
the sources of these particles, the large ground-based experiments built in the last few decades, like
the Pierre Auger Observatory, have been helping in shedding light on such open questions.

In this analysis we simultaneously fit a simple astrophysical model to both the energy spectrum
and the mass composition data measured at the Pierre Auger Observatory, considering energies
from 1017.8 eV to include the region across the ankle. At this first stage, the e�ects of the potentially
relevant interactions occurring in the acceleration sites are not considered, limiting the study to
constrain the physical parameters related to the energy spectrum and the mass composition of
particles escaping the environments of extragalactic sources. In a previous publication [2], a model
consisting of one single population of extragalactic sources was fitted to the data above the ankle
(⇢ > 1018.7 eV). Here, since we want to interpret also the ankle region, we assume the presence of
one (or more) additional contribution(s) at low energies, so that the ankle feature results from the
superposition of di�erent components. Each extragalactic component originates from a population
of identical sources, uniformly distributed in the comoving volume except for a local overdensity
for distances smaller than ⇠ 30 Mpc. The overdensity is considered as a cluster centred around
our Galaxy, following [3], which provides a good approximation to nearby densities if compared
to the distributions of stellar mass and star formation (SF) rate over the full sky illustrated in [4].
Each component is given by the superposition of the contributions of =  5 representative nuclear
species �, chosen among 1H, 4He, 14N, 28Si, 56Fe, ejected according to a power-law spectrum with
a rigidity-dependent broken exponential cuto�:

� (⇢) =
’
�

5� · �0 ·
✓
⇢

⇢0

◆�W
·
8>><
>>:

1, ⇢ < /� · 'cut;

exp
⇣
1 � ⇢

/� ·'cut

⌘
, ⇢ > /� · 'cut.

(1)

where �0 is the normalisation factor, /� is the atomic number of each species � and 5� is the
fraction of � at the energy ⇢0 = 1017.5 eV.

fpd Talys [6], PSB [7] XYZ
EBL Gilmore [8], Dominguez [9] XYZ
HIM EPOS-LHC [10], Sibyll2.3d [11], QGSJetIIv4 [12] XYZ

Table 1: The propagation models used in this analysis. The
bold letters define the label ’XYZ’. For instance, ‘TGE’ stands for
Talys, Glimore and EPOS-LHC models.

The energy spectrum and mass com-
position of the particles escaping from the
sources are modified during the propaga-
tion in the intergalactic medium (IGM) by
the adiabatic energy losses and the interac-
tions with background photons. We take
into account these e�ects by using SimProp [5] simulations, where the uncertain quantities, i.e.
the photodisintegration cross sections fpd and the EBL spectrum, are treated with phenomenolog-
ical models. Besides, since a direct measurement of the mass composition is not possible on an
event-by-event basis, we use the distribution of -max as an estimator of the mass distribution in each
energy bin. The conversion to the mass distribution depends on the chosen hadronic interaction
model (HIM), which is thus another source of uncertainty. The various propagation models used in
this analysis are shown in Tab. 1. We choose the configuration labelled as “TGE” as our reference
and the impact of the models on the fit results will be discussed in Sec. 4.

2

Extragalactic sources - assume rigidity-dependent cut-off at source

- uniformly distributed identical sources (except for local over-density  Mpc)
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d < 30
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fA γ Rcut
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- two scenarios explored (incl. extragalactic contribution)

- Minimal difference in mass predictions from scenarios
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different mass groups have small overlap and the composition becomes heavier as the energy
increases. The estimated non-negligible Fe fraction at the sources is actually required only by the
energy spectrum fit, since it contributes at the highest energies where the mass composition data
are not available, as already noted in [17].

3. Effect of the experimental systematic uncertainties

The systematic uncertainties of instrumental origin affect both the energy and the !max mea-
surements. The uncertainty on the energy scale is assumed to be Δ"/" = 14% in the whole
considered energy range [18]. For the !max scale we consider an asymmetric and slightly energy-
dependent uncertainty, ranging from 6 to 9 g cm−2 [13]. An additional systematic effect could also
arise from the uncertainties on the !max resolution and acceptance parameters [13], but we verified
that their impact on the fit results is here negligible.

Δ!max Δ"/" #! #"max #

-14% 52.5 578.3 630.9
−1$syst 0 71.7 595.2 666.9

+14% 64.9 609.3 674.2
-14% 53.5 581.3 634.8

0 0 60.1 554.8 614.9
+14% 70.6 548.8 619.5
-14% 79.1 714.2 793.3

+1$syst 0 80.8 555.4 736.2
+14% 82.4 615.7 698.2

Table 3: The effect on the deviance of the
±1 #syst shifts in the energy and !max scales.

.

Following the same approach used in [2], we take
into account the uncertainty on the energy scale and on
the !max scale by shifting all the measured energies and
!max values by one systematic standard deviation in each
direction. We consider all the possible combinations of
these shifts and their effect on the deviance value is sum-
marised in Tab. 3. The dominant effect in terms of predic-
tions at Earth is the one arising from the !max uncertainty;
as for the estimated best fit parameters, they are not much
modified when the experimental systematic uncertainties
are considered.

The maximal variations on the predicted fluxes at Earth, obtained by considering all the
configurations of Tab. 3, are shown in Fig. 3. The rather large uncertainty on the predicted total
fluxes (brown band) is due to the ±14% shifts in the energy scale, but it significantly affects only

Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the effect on
the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the energies and/or the
!max distributions of 1 #syst in both directions, as shown in Tab. 3. The bands represent the maximal variations induced
by considering all the possible combinations of shifts. The shaded area in the right plot indicates the region where the
!max measurements are grouped in one single energy bin because of the low statistics and thus the mass composition
predictions are mainly driven by the energy spectrum fit.
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are free fit parameters. Our data cannot be described by a Galactic contribution with heavier
mass compositions, e.g. the deviance reaches ∼ 1000 if a composition dominated by silicon is
assumed. In the second scenario we assume only one additional mixed extragalactic component
at low energies, similar to the above-ankle one, but characterised by different physical parameters.
Even if this scenario exhibits a lower deviance, the difference is comparable to the systematic
uncertainties effect illustrated in the next sections; in the future a more detailed investigation of the
assumptions on the Galactic contribution could possibly help to establish a favoured scenario.

In both the scenarios the high-energy (HE) component exhibits a very hard energy spectrum
at the sources, a relatively low maximum rigidity and a mixed mass composition, dominated by
medium-mass nuclei. On the other hand, the additional low-energy (LE) extragalactic component,
either light or mixed, has a very soft energy spectrum and a very high rigidity cutoff, which are also
related to a larger estimated source emissivity with respect to the one of the HE component; the fit
is actually degenerate with respect to !cut for values above ∼ 1019 eV, thus fixing this parameter to
an arbitrarily high value, such as 1024 eV, provides the same best fit results.
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Figure 1: The measured energy spectrum and the estimated best fit results in the scenario with two mixed extragalactic
components. Left: the estimated contributions from the two extragalactic components (red: LE component, blue: HE
component). Right: the partial fluxes related to different nuclear species at the top of atmosphere, grouped according to
their mass number: " = 1 (red), 2 ≤ " ≤ 4 (grey), 5 ≤ " ≤ 22 (green), 23 ≤ " ≤ 38 (cyan), " ≥ 39 (blue).
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Figure 2: The first two moments of the #max distributions in each energy bin along with their expected values and the
predictions for pure compositions of 1H (red), 4He (grey), 14N (green), 28Si (cyan), 56Fe (blue).

In Fig. 1 and in Fig. 2 the best fit results obtained in the scenario with two mixed extragalactic
components are shown with the observed energy spectrum and the first two moments of the measured
#max distributions. The observed mass composition below the ankle is mixed and dominated by
protons and medium-mass nuclei, such as nitrogen. Above the ankle the contributions from the
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are free fit parameters. Our data cannot be described by a Galactic contribution with heavier
mass compositions, e.g. the deviance reaches ∼ 1000 if a composition dominated by silicon is
assumed. In the second scenario we assume only one additional mixed extragalactic component
at low energies, similar to the above-ankle one, but characterised by different physical parameters.
Even if this scenario exhibits a lower deviance, the difference is comparable to the systematic
uncertainties effect illustrated in the next sections; in the future a more detailed investigation of the
assumptions on the Galactic contribution could possibly help to establish a favoured scenario.

In both the scenarios the high-energy (HE) component exhibits a very hard energy spectrum
at the sources, a relatively low maximum rigidity and a mixed mass composition, dominated by
medium-mass nuclei. On the other hand, the additional low-energy (LE) extragalactic component,
either light or mixed, has a very soft energy spectrum and a very high rigidity cutoff, which are also
related to a larger estimated source emissivity with respect to the one of the HE component; the fit
is actually degenerate with respect to !cut for values above ∼ 1019 eV, thus fixing this parameter to
an arbitrarily high value, such as 1024 eV, provides the same best fit results.
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Figure 1: The measured energy spectrum and the estimated best fit results in the scenario with two mixed extragalactic
components. Left: the estimated contributions from the two extragalactic components (red: LE component, blue: HE
component). Right: the partial fluxes related to different nuclear species at the top of atmosphere, grouped according to
their mass number: " = 1 (red), 2 ≤ " ≤ 4 (grey), 5 ≤ " ≤ 22 (green), 23 ≤ " ≤ 38 (cyan), " ≥ 39 (blue).
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Figure 2: The first two moments of the #max distributions in each energy bin along with their expected values and the
predictions for pure compositions of 1H (red), 4He (grey), 14N (green), 28Si (cyan), 56Fe (blue).

In Fig. 1 and in Fig. 2 the best fit results obtained in the scenario with two mixed extragalactic
components are shown with the observed energy spectrum and the first two moments of the measured
#max distributions. The observed mass composition below the ankle is mixed and dominated by
protons and medium-mass nuclei, such as nitrogen. Above the ankle the contributions from the
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Effect of the systematic uncertainties

Energy scale:   
Xmax scale: 

σsys(E)/E = 14 %
σsys(Xmax) = 6 ÷ 9 g cm−2
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Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the
effect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the !max distributions of 1 "syst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.

4. Effect of the uncertainties from models

We also investigate the impact on the fit results of changing the propagation models and the
hadronic interaction model. In all the cases we repeat the fit considering different combinations of
propagation models, labelled as ’XY’ according to Tab. 1. The results thus obtained are written in
Tab. 5 and their effect on the predicted fluxes at Earth is shown in Fig. 4.

As concerns the hadronic interaction model, we verified that QGSJetIIv4 cannot properly
describe our data and is thus excluded from this analysis. Since we want to keep open the option
that our data are better described by an intermediate model between EPOS-LHC and Sibyll2.3d
instead of exactly one of them, we introduce an additional nuisance parameter #HIM, limited
between 0 and 1, which defines the value of each HIM-dependent Gumbel parameter as $ =
#HIM · $EPOS + (1 − #HIM) · $Sibyll. The introduction of #HIM leads to an additional deviance term
%HIM = (#HIM − 0.5)2/(0.5)2.

TG PG TD PD
LE HE LE HE LE HE LE HE

! 3.49 ± 0.02 −1.98 ± 0.10 3.48 ± 0.04 −1.9 ± 0.2 3.66 ± 0.05 −0.93 ± 0.09 3.51 ± 0.06 −0.86 ± 0.10
log10 ("cut/V) 24 (lim.) 18.16 ± 0.01 24 (lim.) 18.16 ± 0.02 18.04 ± 0.04 18.23 ± 0.01 17.95 ± 0.06 18.21 ± 0.01
#H (%) 49.87 $ (10−7) 49.39 0.44 44.17 0.38 40.85 $ (10−9)
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Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the
effect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the !max distributions of 1 "syst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.
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Tab. 5 and their effect on the predicted fluxes at Earth is shown in Fig. 4.
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Figure 4: Left: the effect of the uncertainties from models on the energy spectrum. Right: the effect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.

5. Source evolution

All the results presented in the previous sections are obtained by assuming no cosmolog-
ical evolution for the populations of extragalactic sources. We perform the fit also assuming
three different evolution scenarios: we consider a SF-like [18] evolution, an AGN-like one [19],
which have a positive source evolution for ! < 1 (" = 3.5 and " = 5, respectively), and a
TDE-like evolution with " = −3 for small ! [20]. Since there is no physical reasons to as-
sume that the two populations of sources have the same cosmological evolution, all the possible
combinations are considered and the results in terms of total deviance are summarised in Fig. 5.

Figure 5: Deviance as a function of the
cosmological evolution of the two popula-
tions.

In the case of the LE component, a positive (negative) evolu-
tion produces a hardening (softening) of the energy spectrum
at the sources to compensate the larger amount of low (high)
energy particles. As for the HE component, the cosmologi-
cal evolution effect is balanced by the interplay between the
modification of the energy spectrum at the sources and/or the
adjustment of the rigidity cutoff of the LE component. If the
HE population has a strong positive evolution (e.g. " = 5), the
hardening of the energy spectrum at the sources is not enough
to compensate the increased amount of low-energy particles,
hence the LE component is suppressed below ∼ 1018 eV to
attempt the description of the whole energy range with the HE component alone; the deviances are
very high, so that such scenarios are excluded by our data at high significance. In all the other
scenarios, the impact on the fit results is within the systematic uncertainties effect, so it is more
difficult to draw a conclusion about a favoured configuration. However, when we consider the values
" = 0, 3.5 for the HE component and " = −3, 0 for the LE one, we obtain the lowest deviances.

6. Conclusions

In this study we performed a combined fit of the energy spectrum and mass composition data
from ∼ 6 · 1017 eV. The region above the ankle is described by an extragalactic component ejected
at the sources with a very hard energy spectrum (# < 0), a rather low rigidity cutoff and a mass
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abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.
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Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the
effect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the !max distributions of 1 "syst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.

4. Effect of the uncertainties from models

We also investigate the impact on the fit results of changing the propagation models and the
hadronic interaction model. In all the cases we repeat the fit considering different combinations of
propagation models, labelled as ’XY’ according to Tab. 1. The results thus obtained are written in
Tab. 5 and their effect on the predicted fluxes at Earth is shown in Fig. 4.

As concerns the hadronic interaction model, we verified that QGSJetIIv4 cannot properly
describe our data and is thus excluded from this analysis. Since we want to keep open the option
that our data are better described by an intermediate model between EPOS-LHC and Sibyll2.3d
instead of exactly one of them, we introduce an additional nuisance parameter #HIM, limited
between 0 and 1, which defines the value of each HIM-dependent Gumbel parameter as $ =
#HIM · $EPOS + (1 − #HIM) · $Sibyll. The introduction of #HIM leads to an additional deviance term
%HIM = (#HIM − 0.5)2/(0.5)2.
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! 3.49 ± 0.02 −1.98 ± 0.10 3.48 ± 0.04 −1.9 ± 0.2 3.66 ± 0.05 −0.93 ± 0.09 3.51 ± 0.06 −0.86 ± 0.10
log10 ("cut/V) 24 (lim.) 18.16 ± 0.01 24 (lim.) 18.16 ± 0.02 18.04 ± 0.04 18.23 ± 0.01 17.95 ± 0.06 18.21 ± 0.01
#H (%) 49.87 $ (10−7) 49.39 0.44 44.17 0.38 40.85 $ (10−9)
#He (%) 10.92 28.60 14.52 49.29 7.45 20.21 14.64 47.99
#N (%) 36.25 69.05 33.28 43.84 45.17 73.80 39.57 38.29
#Si (%) $ (10−6) 7.32 $ (10−7) 4.64 $ (10−5) 2.91 $ (10−6) 11.15
#Fe (%) 2.96 2.35 2.80 1.78 3.21 2.69 4.94 2.58
%HIM 1.0 (lim.) 0.94 ± 0.17 0.92 ± 0.15 0.86 ± 0.13
&HIM 1.0 0.78 0.69 0.52
&! ('! ) 60.1 (24) 51.9 (24) 44.3 (24) 51.7 (24)
&"max ('"max ) 555.8 (329) 564.8 (329) 587.5 (329) 593.2 (329)
&tot (' ) 615.9 (353) 616.7 (353) 631.8 (353) 645.0 (353)

Table 5: Best fit results obtained by using different combinations of propagation models. The uncertainty
due to the hadronic interaction model choice is considered by fitting the nuisance parameter #HIM.

For all the considered combinations of propagation models our data appear to be better described
by either EPOS-LHC or intermediate models compatible with it. The lowest deviance is obtained in
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Figure 3: Left: the combined effect of the experimental uncertainties on the energy spectrum. Right: the
effect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the !max distributions of 1 "syst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.
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Figure 4: Left: the effect of the uncertainties from models on the energy spectrum. Right: the effect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.

5. Source evolution

All the results presented in the previous sections are obtained by assuming no cosmolog-
ical evolution for the populations of extragalactic sources. We perform the fit also assuming
three different evolution scenarios: we consider a SF-like [18] evolution, an AGN-like one [19],
which have a positive source evolution for ! < 1 (" = 3.5 and " = 5, respectively), and a
TDE-like evolution with " = −3 for small ! [20]. Since there is no physical reasons to as-
sume that the two populations of sources have the same cosmological evolution, all the possible
combinations are considered and the results in terms of total deviance are summarised in Fig. 5.

Figure 5: Deviance as a function of the
cosmological evolution of the two popula-
tions.

In the case of the LE component, a positive (negative) evolu-
tion produces a hardening (softening) of the energy spectrum
at the sources to compensate the larger amount of low (high)
energy particles. As for the HE component, the cosmologi-
cal evolution effect is balanced by the interplay between the
modification of the energy spectrum at the sources and/or the
adjustment of the rigidity cutoff of the LE component. If the
HE population has a strong positive evolution (e.g. " = 5), the
hardening of the energy spectrum at the sources is not enough
to compensate the increased amount of low-energy particles,
hence the LE component is suppressed below ∼ 1018 eV to
attempt the description of the whole energy range with the HE component alone; the deviances are
very high, so that such scenarios are excluded by our data at high significance. In all the other
scenarios, the impact on the fit results is within the systematic uncertainties effect, so it is more
difficult to draw a conclusion about a favoured configuration. However, when we consider the values
" = 0, 3.5 for the HE component and " = −3, 0 for the LE one, we obtain the lowest deviances.

6. Conclusions

In this study we performed a combined fit of the energy spectrum and mass composition data
from ∼ 6 · 1017 eV. The region above the ankle is described by an extragalactic component ejected
at the sources with a very hard energy spectrum (# < 0), a rather low rigidity cutoff and a mass
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Figure 4: Left: the effect of the uncertainties from models on the energy spectrum. Right: the effect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.
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1. Introduction

The existence of ultra-high-energy cosmic rays (UHECRs), the ones reaching Earth with
energies above ∼ 1018 eV, was proven in the early 1960s and recent measurements point to a
predominant flux component of extragalactic origin at these energies [1]. In the still open quest for
the sources of these particles, the large ground-based experiments built in the last few decades, like
the Pierre Auger Observatory, have been helping in shedding light on such open questions.

In this analysis we simultaneously fit a simple astrophysical model to both the energy spectrum
and the mass composition data measured at the Pierre Auger Observatory, considering energies
from 1017.8 eV to include the region across the ankle. At this first stage, the effects of the potentially
relevant interactions occurring in the acceleration sites are not considered, limiting the study to
constrain the physical parameters related to the energy spectrum and the mass composition of
particles escaping the environments of extragalactic sources. In a previous publication [2], a model
consisting of one single population of extragalactic sources was fitted to the data above the ankle
(! > 1018.7 eV). Here, since we want to interpret also the ankle region, we assume the presence of
one (or more) additional contribution(s) at low energies, so that the ankle feature results from the
superposition of different components. Each extragalactic component originates from a population
of identical sources, uniformly distributed in the comoving volume except for a local overdensity
for distances smaller than ∼ 30 Mpc. The overdensity is considered as a cluster centred around
our Galaxy, following [3], which provides a good approximation to nearby densities if compared
to the distributions of stellar mass and star formation (SF) rate over the full sky illustrated in [4].
Each component is given by the superposition of the contributions of " ≤ 5 representative nuclear
species #, chosen among 1H, 4He, 14N, 28Si, 56Fe, ejected according to a power-law spectrum with
a rigidity-dependent broken exponential cutoff:

$ (!) =
∑
!

%! · $0 ·
(
!

!0

)−"
·



1, ! < &! · 'cut;
exp

(
1 − #

$! ·%cut

)
, ! > &! · 'cut.

(1)

where $0 is the normalisation factor, &! is the atomic number of each species # and %! is the
fraction of # at the energy !0 = 1017.5 eV.

&pd Talys [6], PSB [7] XYZ
EBL Gilmore [8], Dominguez [9] XYZ
HIM EPOS-LHC [10], Sibyll2.3d [11], QGSJetIIv4 [12] XYZ

Table 1: The propagation models used in this analysis. The
bold letters define the label ’XYZ’. For instance, ‘TGE’ stands for
Talys, Glimore and EPOS-LHC models.

The energy spectrum and mass com-
position of the particles escaping from the
sources are modified during the propaga-
tion in the intergalactic medium (IGM) by
the adiabatic energy losses and the interac-
tions with background photons. We take
into account these effects by using SimProp [5] simulations, where the uncertain quantities, i.e.
the photodisintegration cross sections (pd and the EBL spectrum, are treated with phenomenolog-
ical models. Besides, since a direct measurement of the mass composition is not possible on an
event-by-event basis, we use the distribution of )max as an estimator of the mass distribution in each
energy bin. The conversion to the mass distribution depends on the chosen hadronic interaction
model (HIM), which is thus another source of uncertainty. The various propagation models used in
this analysis are shown in Tab. 1. We choose the configuration labelled as “TGE” as our reference
and the impact of the models on the fit results will be discussed in Sec. 4.
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Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the
e�ect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the -max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.

4. E�ect of the uncertainties from models

We also investigate the impact on the fit results of changing the propagation models and the
hadronic interaction model. In all the cases we repeat the fit considering di�erent combinations of
propagation models, labelled as ’XY’ according to Tab. 1. The results thus obtained are written in
Tab. 5 and their e�ect on the predicted fluxes at Earth is shown in Fig. 4.

As concerns the hadronic interaction model, we verified that QGSJetIIv4 cannot properly
describe our data and is thus excluded from this analysis. Since we want to keep open the option
that our data are better described by an intermediate model between EPOS-LHC and Sibyll2.3d
instead of exactly one of them, we introduce an additional nuisance parameter XHIM, limited
between 0 and 1, which defines the value of each HIM-dependent Gumbel parameter as ? =
XHIM · ?EPOS + (1 � XHIM) · ?Sibyll. The introduction of XHIM leads to an additional deviance term
⇡HIM = (XHIM � 0.5)2/(0.5)2.
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LE HE LE HE LE HE LE HE

W 3.49 ± 0.02 �1.98 ± 0.10 3.48 ± 0.04 �1.9 ± 0.2 3.66 ± 0.05 �0.93 ± 0.09 3.51 ± 0.06 �0.86 ± 0.10
log10 ('cut/V) 24 (lim.) 18.16 ± 0.01 24 (lim.) 18.16 ± 0.02 18.04 ± 0.04 18.23 ± 0.01 17.95 ± 0.06 18.21 ± 0.01
�H (%) 49.87 $ (10�7) 49.39 0.44 44.17 0.38 40.85 $ (10�9)
�He (%) 10.92 28.60 14.52 49.29 7.45 20.21 14.64 47.99
�N (%) 36.25 69.05 33.28 43.84 45.17 73.80 39.57 38.29
�Si (%) $ (10�6) 7.32 $ (10�7) 4.64 $ (10�5) 2.91 $ (10�6) 11.15
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XHIM 1.0 (lim.) 0.94 ± 0.17 0.92 ± 0.15 0.86 ± 0.13
⇡HIM 1.0 0.78 0.69 0.52
⇡� (#� ) 60.1 (24) 51.9 (24) 44.3 (24) 51.7 (24)
⇡-max (#-max ) 555.8 (329) 564.8 (329) 587.5 (329) 593.2 (329)
⇡tot (# ) 615.9 (353) 616.7 (353) 631.8 (353) 645.0 (353)

Table 5: Best fit results obtained by using di�erent combinations of propagation models. The uncertainty
due to the hadronic interaction model choice is considered by fitting the nuisance parameter XHIM.

For all the considered combinations of propagation models our data appear to be better described
by either EPOS-LHC or intermediate models compatible with it. The lowest deviance is obtained in
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Figure 3: Left: the combined e�ect of the experimental uncertainties on the energy spectrum. Right: the
e�ect on the relative abundances at the top of atmosphere. The uncertainties are considered by shifting the
energies and/or the -max distributions of 1 fsyst in both directions, as shown in Tab. 3. The bands represent
the maximal variations induced by considering all the possible combinations of shifts. The shaded area in
the right plot indicates the energy region where no mass composition information is available and thus the
predictions are only extrapolated from the energy spectrum fit.
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• The strongest impact on the predictions is the one from the Xmax scale

Systematic uncertainties from models:

Hadronic interaction model: Sibyll2.3d/EPOS-LHC/intermediate models 
(with a nuisance parameter)
Propagation models: Talys/PSB; Gilmore/Dominguez 
(fit repeated considering different model configurations)

• EPOS-LHC or models compatible with it are 
always preferred
→ HIM choice: stronger impact on D 
and on the predictions at Earth

The dominant effect on the the predicted fluxes and on the 
deviance is the one from the experimental uncertainties
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Figure 4: Left: the e�ect of the uncertainties from models on the energy spectrum. Right: the e�ect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.

5. Source evolution

All the results presented in the previous sections are obtained by assuming no cosmolog-
ical evolution for the populations of extragalactic sources. We perform the fit also assuming
three di�erent evolution scenarios: we consider a SF-like [18] evolution, an AGN-like one [19],
which have a positive source evolution for I < 1 (< = 3.5 and < = 5, respectively), and a
TDE-like evolution with < = �3 for small I [20]. Since there is no physical reasons to as-
sume that the two populations of sources have the same cosmological evolution, all the possible
combinations are considered and the results in terms of total deviance are summarised in Fig. 5.

Figure 5: Deviance as a function of the
cosmological evolution of the two popula-
tions.

In the case of the LE component, a positive (negative) evolu-
tion produces a hardening (softening) of the energy spectrum
at the sources to compensate the larger amount of low (high)
energy particles. As for the HE component, the cosmologi-
cal evolution e�ect is balanced by the interplay between the
modification of the energy spectrum at the sources and/or the
adjustment of the rigidity cuto� of the LE component. If the
HE population has a strong positive evolution (e.g. < = 5), the
hardening of the energy spectrum at the sources is not enough
to compensate the increased amount of low-energy particles,
hence the LE component is suppressed below ⇠ 1018 eV to
attempt the description of the whole energy range with the HE component alone; the deviances are
very high, so that such scenarios are excluded by our data at high significance. In all the other
scenarios, the impact on the fit results is within the systematic uncertainties e�ect, so it is more
di�cult to draw a conclusion about a favoured configuration. However, when we consider the values
< = 0, 3.5 for the HE component and < = �3, 0 for the LE one, we obtain the lowest deviances.

6. Conclusions

In this study we performed a combined fit of the energy spectrum and mass composition data
from ⇠ 6 · 1017 eV. The region above the ankle is described by an extragalactic component ejected
at the sources with a very hard energy spectrum (W < 0), a rather low rigidity cuto� and a mass

7

Combined fit of the energy spectrum and mass composition across the ankle Eleonora Guido

Figure 4: Left: the e�ect of the uncertainties from models on the energy spectrum. Right: the e�ect on the relative
abundances at the top of atmosphere. The bands represent the maximal variations given by the results in Tab. 4.
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scenarios, the impact on the fit results is within the systematic uncertainties e�ect, so it is more
di�cult to draw a conclusion about a favoured configuration. However, when we consider the values
< = 0, 3.5 for the HE component and < = �3, 0 for the LE one, we obtain the lowest deviances.
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Models configuration: Talys, Gilmore, EPOS-LHC

Scenario A Scenario B

Fit results in the two scenarios

Scenario B
Gal. contribution +  

EG component of pure p 
Two EG mixed 
components

June 26, 2021

�pd Talys, PSB XYZ
EBL Gilmore, Dominguez XYZ
HIM EPOS-LHC, Sibyll2.3d, QGSJetIIv4 XYZ

Galactic contribution (at Earth) N+Si -

J0,gal [eV�1 km�2 sr�1 yr�1] (1.07 ± 0.06) · 10�13 -

log
10

(Rcut,gal/V) 17.48 ± 0.02 -

fN(%) 93.0 ± 0.5 -

EG components (at the sources) Low energy High energy Low energy High energy

L0 [1045 erg Mpc�3 yr�1] 7.28 0.44 17.0 0.45

� 3.30 ± 0.05 �1.47 ± 0.12 3.49 ± 0.02 �1.98 ± 0.10

log
10

(Rcut/V) 24 (lim.) 18.19 ± 0.02 24 (lim.) 18.16 ± 0.01

IH (%) 100 (fixed) 0.0 49.87 0.0

IHe (%) - 27.17 10.92 28.60

IN (%) - 69.86 36.25 69.05

ISi (%) - 0.0 0.0 0.0

IFe (%) - 2.97 2.96 2.35

DJ (NJ ) 49.5 (24) 60.1 (24)

DXmax
(NXmax

) 593.8 (329) 554.8 (329)

D (N) 643.3 (353) 614.9 (353)

Talys, Gilmore PSB, Gilmore Talys, Dominguez PSB, Dominguez

LE HE LE HE LE HE LE HE

L0 [1045erg Mpc�3yr�1] 17.0 0.45 16.8 0.44 21.7 0.71 22.1 0.71

� 3.49 ± 0.02 �1.98 ± 0.10 3.49 ± 0.03 �1.95 ± 0.16 3.67 ± 0.06 �0.95 ± 0.12 3.70 ± 0.05 �0.94 ± 0.12

log
10

(Rcut/V) 24 (lim.) 18.16 ± 0.01 24 (lim.) 18.16 ± 0.02 18.04 ± 0.06 18.23 ± 0.02 18.03 ± 0.02 18.22 ± 0.02

IH (%) 49.87 0.0 51.15 0.91 45.48 0.61 45.67 0.79

IHe (%) 10.92 28.60 12.68 49.09 6.13 20.25 8.55 48.79

IN (%) 36.25 69.05 33.25 43.89 45.03 73.70 42.10 40.57

ISi (%) 0.0 7.32 0.0 4.23 0.0 2.75 0.0 7.99

IFe (%) 2.96 2.35 2.93 1.87 3.36 2.69 3.67 1.86

�HIM 1.0 (lim.) 1.0 (lim.) 0.96+0.04
�0.16 0.94+0.06

�0.14

DJ (NJ ) 60.1 (24) 53.0 (24) 44.7 (24) 43.0 (24)

DXmax
(NXmax

) 554.8 (329) 562.8 (329) 586.3 (329) 591.6 (329)

D (N) 614.9 (353) 615.8 (353) 631.0 (353) 634.6 (353)
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energy ⇢0 = 1016.85 eV, the normalisation �0,gal and the Z-dependent rigidity cuto� log10('cut,gal)
are free fit parameters. Our data cannot be described by a Galactic contribution with heavier mass
compositions, e.g. the deviance reaches ⇠ 1000 if a composition dominated by silicon is assumed.
In the latter scenario we assume only one additional mixed extragalactic component at low energies,
similar to the above-ankle one, but characterised by di�erent physical parameters.

In both the scenarios the high-energy (HE) component exhibits a very hard energy spectrum
at the sources, a relatively low maximum rigidity and a mixed mass composition, dominated by
medium-mass nuclei. On the other hand, the additional low-energy (LE) extragalactic component,
either light or mixed, has a very soft energy spectrum and a very high rigidity cuto�; the fit is
actually degenerate with respect to 'cut for values above ⇠ 1019 eV, thus fixing this parameter to an
arbitrarily high value, such as 1024 eV, provides the same best fit results.
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Figure 1: The measured energy spectrum and the estimated best fit results. Left: the estimated contributions
from the two extragalactic components (red: low-energy component, blue: high-energy component). Right:
the partial fluxes related to di�erent nuclear species at the top of atmosphere, grouped according to their
mass number: � = 1 (red), 2  �  4 (grey), 5  �  22 (green), 23  �  38 (cyan), � � 39 (blue).
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Figure 2: The first two moments of the distributions in each energy bin along with their expected values and
the predictions for pure compositions of 1H (red), 4He (grey), 14N (green), 28Si (cyan), 56Fe (blue).

In Fig. 1 and in Fig. 2 the best fit results obtained in the scenario with two mixed extragalactic
components are shown with the observed energy spectrum and the first two moments of the measured
-max distributions. The observed mass composition below the ankle is mixed and dominated by
protons and medium-mass nuclei, such as nitrogen. Above the ankle the contributions from the
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Predicted fluxes at Earth

Differences between the two scenarios within the systematic uncertainties  
→ further investigations of the Galactic contribution to possibly define a 

favoured scenario 

Result:  V, with very hard source spectral index, 
, not well constrained in the model.  No strong dependence on 

source evolution . 
 
In this simple model, the spectral instep feature is associated with 
helium from nearer sources.  The flux suppression is a superposition 
of source exhaustion and propagation energy losses.

Rcut ∼ 1.5 × 1018

γ < 1
m

Bands describe experimental uncertainties (in E and Xmax), dominate over model systematics.
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horizon and zenith at the observatory site to define the local
zenithal and azimuth angles ðθ;φÞ. Alternatively, we can
make use of the fixed equatorial coordinates, right ascen-
sion and declination ðα; δÞ, aligned with the equator and
poles of the Earth, for the same purpose. The wide range of
declinations covered by using events with zenith angles up
to 60°, from δ ¼ −90° to δ ≃þ24.8° (covering 71% of the
sky), allows a search for dependencies of the energy
spectrum on declination. We present below the determi-
nation of the energy spectrum in three declination bands
and discuss the results.
For each declination band under consideration, labelled

as k, the energy spectrum is estimated as

Jik ¼
Nikcik
EkΔEi

; ð10Þ

where Nik and cik stand for the number of events and the
correction factors in the energy bin ΔEi and in the
declination band considered k, and Ek is the exposure
restricted to the declination band k. For this study, the
observed part of the sky is divided into declination bands
with equal exposure, Ek ¼ E=3. The correction factors are
inferred from a forward-folding procedure identical to
that described in Sec. IV, except that the response matrix
is adapted to each declination band (for details see
Appendix C).
The intervals in declination that guarantee that the

exposure of the bands are each E=3 are determined by
integrating the directional exposure function, ωðδÞ, derived
in Appendix E, over the declination so as to satisfy

R δk
δk−1

dδ cos δωðδÞ
R δ3
δ0
dδ cos δωðδÞ

¼ 1

3
; ð11Þ

where δ0 ¼ −π=2 and δ3 ¼ þ24.8°. Numerically, it is
found that δ1 ¼ −42.5° and δ2 ¼ −17.3°.
The resulting spectra (scaled by E3) are shown in the left

panel of Fig. 13. For reference, the best fit of the spectrum
obtained in section IV B is shown as the black line. No
strong dependence of the fluxes on declination is observed.
To examine small differences, a ratio plot is shown in the

right panel by taking the energy spectrum observed in the
whole field of view as the reference. A weighted-average
over wider energy bins is performed to avoid large
statistical fluctuations preventing an accurate visual appre-
ciation. For each energy, the data points are observed to be
in statistical agreement with each other. Note that the same
conclusions hold when analyzing data in terms of integral
intensities, as evidenced for instance in Table IV above
8 × 1018 eV. Similar statistical agreements are found above
other energy thresholds. Hence this analysis provides no
evidence for a strong declination dependence of the energy
spectrum.
A 4.6% first-harmonic variation in the flux in right

ascension has been observed in the energy bins above
8 × 1018 eV shown in the right panel of Fig. 13 [47]. It is
thus worth relating the data points reported here to these
measurements that are interpreted as dipole anisotropies.
The technical details to establish these relationships are
given in Appendix E.

TABLE IV. Integral intensity above 8 × 1018 eV in the three
declination bands considered.

Declination band Integral intensity [km−2 yr−1 sr−1]

−90.0° ≤ δ < −42.5° ð4.17% 0.04Þ × 10−1

−42.5° ≤ δ < −17.3° ð4.11% 0.04Þ × 10−1

−17.3° ≤ δ < þ24.8° ð4.11% 0.04Þ × 10−1
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FIG. 13. Left: Energy spectra in three declination bands of equal exposure. Right: Ratio of the declination-band spectra to that of the
full field-of-view. The horizontal lines show the expectation from the observed dipole [47]. An artificial shift of %5% is applied to the
energies in the x-axis of the northernmost/southernmost declination spectra to make it easier to identify the different data points.
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Declination dependence of spectrum

horizon and zenith at the observatory site to define the local
zenithal and azimuth angles ðθ;φÞ. Alternatively, we can
make use of the fixed equatorial coordinates, right ascen-
sion and declination ðα; δÞ, aligned with the equator and
poles of the Earth, for the same purpose. The wide range of
declinations covered by using events with zenith angles up
to 60°, from δ ¼ −90° to δ ≃þ24.8° (covering 71% of the
sky), allows a search for dependencies of the energy
spectrum on declination. We present below the determi-
nation of the energy spectrum in three declination bands
and discuss the results.
For each declination band under consideration, labelled

as k, the energy spectrum is estimated as

Jik ¼
Nikcik
EkΔEi

; ð10Þ

where Nik and cik stand for the number of events and the
correction factors in the energy bin ΔEi and in the
declination band considered k, and Ek is the exposure
restricted to the declination band k. For this study, the
observed part of the sky is divided into declination bands
with equal exposure, Ek ¼ E=3. The correction factors are
inferred from a forward-folding procedure identical to
that described in Sec. IV, except that the response matrix
is adapted to each declination band (for details see
Appendix C).
The intervals in declination that guarantee that the

exposure of the bands are each E=3 are determined by
integrating the directional exposure function, ωðδÞ, derived
in Appendix E, over the declination so as to satisfy
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where δ0 ¼ −π=2 and δ3 ¼ þ24.8°. Numerically, it is
found that δ1 ¼ −42.5° and δ2 ¼ −17.3°.
The resulting spectra (scaled by E3) are shown in the left

panel of Fig. 13. For reference, the best fit of the spectrum
obtained in section IV B is shown as the black line. No
strong dependence of the fluxes on declination is observed.
To examine small differences, a ratio plot is shown in the

right panel by taking the energy spectrum observed in the
whole field of view as the reference. A weighted-average
over wider energy bins is performed to avoid large
statistical fluctuations preventing an accurate visual appre-
ciation. For each energy, the data points are observed to be
in statistical agreement with each other. Note that the same
conclusions hold when analyzing data in terms of integral
intensities, as evidenced for instance in Table IV above
8 × 1018 eV. Similar statistical agreements are found above
other energy thresholds. Hence this analysis provides no
evidence for a strong declination dependence of the energy
spectrum.
A 4.6% first-harmonic variation in the flux in right

ascension has been observed in the energy bins above
8 × 1018 eV shown in the right panel of Fig. 13 [47]. It is
thus worth relating the data points reported here to these
measurements that are interpreted as dipole anisotropies.
The technical details to establish these relationships are
given in Appendix E.

TABLE IV. Integral intensity above 8 × 1018 eV in the three
declination bands considered.

Declination band Integral intensity [km−2 yr−1 sr−1]

−90.0° ≤ δ < −42.5° ð4.17% 0.04Þ × 10−1

−42.5° ≤ δ < −17.3° ð4.11% 0.04Þ × 10−1

−17.3° ≤ δ < þ24.8° ð4.11% 0.04Þ × 10−1
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FIG. 13. Left: Energy spectra in three declination bands of equal exposure. Right: Ratio of the declination-band spectra to that of the
full field-of-view. The horizontal lines show the expectation from the observed dipole [47]. An artificial shift of %5% is applied to the
energies in the x-axis of the northernmost/southernmost declination spectra to make it easier to identify the different data points.
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where �0 is a normalization parameter and l8 9 determine the width of the transitions between the
power laws.

The best-fit parameters, with statistical and systematic uncertainties, are presented in Tab. 1.
Data show with high significance the inflection points commonly called the 2nd knee, the ankle
and the abrupt suppression at the highest energies. Just above 1019 eV, the spectrum manifests an
instep steepening point whose first observation was reported only recently [5, 16] and is now also
confirmed by the Telescope Array [17]. Finally, for the first time, we report the flattening called the
low energy ankle at 28 PeV whose origin, together with that of the 2nd knee, is probably connected
to changes in the mass composition of cosmic rays originating in our Galaxy [15, 18].

Table 1: Parameters of the best fit of Eq. (1) to the combined spectrum. The first uncertainty is statistical
and the second one systematic. The fit has been performed with a set of transition width parameters that well
describe the data: l01 = l12 = 0.25 and l23 = l34 = l45 = 0.05 [5].

�0 = (8.34 ± 0.04 ± 3.40) ⇥ 10�11 km�2sr�1yr�1eV�1

W0 = 3.09 ± 0.01 ± 0.10
low energy ankle ⇢01 = (2.8 ± 0.3 ± 0.4) ⇥ 1016 eV W1 = 2.85 ± 0.01 ± 0.05
2nd knee ⇢12 = (1.58 ± 0.05 ± 0.2) ⇥ 1017 eV W2 = 3.283 ± 0.002 ± 0.10
ankle ⇢23 = (5.0 ± 0.1 ± 0.8) ⇥ 1018 eV W3 = 2.54 ± 0.03 ± 0.05
instep ⇢34 = (1.4 ± 0.1 ± 0.2) ⇥ 1019 eV W4 = 3.03 ± 0.05 ± 0.10
suppression ⇢45 = (4.7 ± 0.3 ± 0.6) ⇥ 1019 eV W5 = 5.3 ± 0.3 ± 0.1
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Origin of low-energy ankle and second knee likely related to mass evolution  
of Galactic CR. 
New instep feature discovered - possible interpretation later

horizon and zenith at the observatory site to define the local
zenithal and azimuth angles ðθ;φÞ. Alternatively, we can
make use of the fixed equatorial coordinates, right ascen-
sion and declination ðα; δÞ, aligned with the equator and
poles of the Earth, for the same purpose. The wide range of
declinations covered by using events with zenith angles up
to 60°, from δ ¼ −90° to δ ≃þ24.8° (covering 71% of the
sky), allows a search for dependencies of the energy
spectrum on declination. We present below the determi-
nation of the energy spectrum in three declination bands
and discuss the results.
For each declination band under consideration, labelled

as k, the energy spectrum is estimated as

Jik ¼
Nikcik
EkΔEi

; ð10Þ

where Nik and cik stand for the number of events and the
correction factors in the energy bin ΔEi and in the
declination band considered k, and Ek is the exposure
restricted to the declination band k. For this study, the
observed part of the sky is divided into declination bands
with equal exposure, Ek ¼ E=3. The correction factors are
inferred from a forward-folding procedure identical to
that described in Sec. IV, except that the response matrix
is adapted to each declination band (for details see
Appendix C).
The intervals in declination that guarantee that the

exposure of the bands are each E=3 are determined by
integrating the directional exposure function, ωðδÞ, derived
in Appendix E, over the declination so as to satisfy

R δk
δk−1

dδ cos δωðδÞ
R δ3
δ0
dδ cos δωðδÞ

¼ 1

3
; ð11Þ

where δ0 ¼ −π=2 and δ3 ¼ þ24.8°. Numerically, it is
found that δ1 ¼ −42.5° and δ2 ¼ −17.3°.
The resulting spectra (scaled by E3) are shown in the left

panel of Fig. 13. For reference, the best fit of the spectrum
obtained in section IV B is shown as the black line. No
strong dependence of the fluxes on declination is observed.
To examine small differences, a ratio plot is shown in the

right panel by taking the energy spectrum observed in the
whole field of view as the reference. A weighted-average
over wider energy bins is performed to avoid large
statistical fluctuations preventing an accurate visual appre-
ciation. For each energy, the data points are observed to be
in statistical agreement with each other. Note that the same
conclusions hold when analyzing data in terms of integral
intensities, as evidenced for instance in Table IV above
8 × 1018 eV. Similar statistical agreements are found above
other energy thresholds. Hence this analysis provides no
evidence for a strong declination dependence of the energy
spectrum.
A 4.6% first-harmonic variation in the flux in right

ascension has been observed in the energy bins above
8 × 1018 eV shown in the right panel of Fig. 13 [47]. It is
thus worth relating the data points reported here to these
measurements that are interpreted as dipole anisotropies.
The technical details to establish these relationships are
given in Appendix E.

TABLE IV. Integral intensity above 8 × 1018 eV in the three
declination bands considered.

Declination band Integral intensity [km−2 yr−1 sr−1]

−90.0° ≤ δ < −42.5° ð4.17% 0.04Þ × 10−1

−42.5° ≤ δ < −17.3° ð4.11% 0.04Þ × 10−1

−17.3° ≤ δ < þ24.8° ð4.11% 0.04Þ × 10−1
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FIG. 13. Left: Energy spectra in three declination bands of equal exposure. Right: Ratio of the declination-band spectra to that of the
full field-of-view. The horizontal lines show the expectation from the observed dipole [47]. An artificial shift of %5% is applied to the
energies in the x-axis of the northernmost/southernmost declination spectra to make it easier to identify the different data points.
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.

� ���� ���� ���� ���� ����

���

���

��	

����


� 
�� ��
 
�� 
�� 
��

muons

em. particles

The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0

PHYSICAL REVIEW LETTERS 126, 152002 (2021)

152002-6

(Phys. Rev. Lett. 126 (2021) 152002)

24 4. Properties of the FD photomultipliers

(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For

123

(Eur. Phys. J. C80 (2020) 751)

Discrepancy in number of muons 
Relative fluctuations in agreement

(Phys. Rev. Lett. 117 (2016) 192001, 
 Phys. Rev. D91 (2015) 032003)

(Dennis Soldin)

What could be the origin of the problem?

17

4

FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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24 4. Properties of the FD photomultipliers

(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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24 4. Properties of the FD photomultipliers

(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0

PHYSICAL REVIEW LETTERS 126, 152002 (2021)

152002-6

(Phys. Rev. Lett. 126 (2021) 152002)

24 4. Properties of the FD photomultipliers

(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the

PMT analogy of air shower

Muon fluctuations driven by first interactions

Hybrid events and inclined showers

Muon counters and vertical showers751 Page 12 of 19 Eur. Phys. J. C (2020) 80 :751

600 625 650 675 700 725
Xmax〉/g cm−2

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

〈ln
(ρ

35
/m

−
2 )

〉

p

He

N

Fe Auger

E = 1017.5 eV,
0◦ ≤ θ ≤ 45◦

EPOS-LHC
QGSJetII-04

650 675 700 725 750
〈Xmax〉/g cm−2

−0.2

0.0

0.2

0.4

0.6

0.8

〈ln
(ρ

35
/m

−
2 )

〉

p

He

N

Fe Auger

E = 1018 eV,
0◦ ≤ θ ≤ 45◦

EPOS-LHC
QGSJetII-04

(a)

(b)

Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the

PMT analogy of air shower

Muon fluctuations driven by first interactions

Hybrid events and inclined showers

Muon counters and vertical showers751 Page 12 of 19 Eur. Phys. J. C (2020) 80 :751

600 625 650 675 700 725
Xmax〉/g cm−2

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

〈ln
(ρ

35
/m

−
2 )

〉

p

He

N

Fe Auger

E = 1017.5 eV,
0◦ ≤ θ ≤ 45◦

EPOS-LHC
QGSJetII-04

650 675 700 725 750
〈Xmax〉/g cm−2

−0.2

0.0

0.2

0.4

0.6

0.8

〈ln
(ρ

35
/m

−
2 )

〉

p

He

N

Fe Auger

E = 1018 eV,
0◦ ≤ θ ≤ 45◦

EPOS-LHC
QGSJetII-04

(a)

(b)

Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.

� ���� ���� ���� ���� ����

���

���

��	

����


� 
�� ��
 
�� 
�� 
��

muons

em. particles

The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0
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(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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FIG. 7. Average logarithmic muon content, 〈lnRµ〉, as a function of the average shower depth, 〈Xmax〉.

D. Number of muons and its fluctuations

The average number of muons in a proton shower of energy E has been shown in simulations to scale as
N∗

µ(E) = C Eβ where β ! 0.9 (see main text for references).
If we assume all the secondaries from the first interaction produce muons following the same relation as given for

protons above, we obtain the number of muons in the shower as

Nµ(E) =
m∑

j=1

C Eβ
j = N∗

µ(E)
m∑

j=1

xβ
j = N∗

µ(E) α1 , (1)

where index j runs over m secondary particles which reinteract hadronically and xj = Ej/E is the fraction of energy
fed to the hadronic shower by each. In this expression the fluctuations in Nµ are induced by α1 in the first generation
which fluctuates because the multiplicity m and the energies xj of the secondaries fluctuate.

Consider a “toy“ interaction producing only pions, all with the same energy and only a fraction f of them are
charged and contribute to the hadron cascade. This model has no fluctuations and should by construction give
α1 = 1, which follows from Eq. (1) if we identify the average number of muons for proton showers with N∗

µ(E) which
coincides with our definition. This incidentally implies a condition for β = log(m)/ log(m/f) which is the same as
that obtained by Matthews and by Kampert et al. (β ! 0.90 for f = 2/3 and m ∼ 50). In a more realistic scenario
α1 fluctuates because the particles do not have the same energy and f (the ratio of charged pions) and m fluctuate.
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The probability of hybrid events hðEÞ (product of the
energy spectrum of cosmic rays and the efficiency of
detection) can be obtained from the data, as explained in
and [10,24,26]. The rhs of Eq. (2) depends on the
parameters a and b via Eq. (1). To obtain the energy
dependence of the fluctuations, we parametrize σ by six
independent values such that σðEÞ ¼ σ̂k · hRμiðEÞ, where
the constants σ̂k are the relative fluctuations in the kth
energy bin with limits ½Ek−1; Ek%, where k runs from one to
six. In Eq. (2), k ¼ 0 corresponds to the contributions from
the interval ½0; Ethr%, where the SD is not fully efficient. The
fluctuations here are assumed to take the value of the first
fitted bin σ̂0 ≡ σ̂1.
The sum over the index i in Eq. (2) (the usual sum over

the log-likelihoods of events) includes only events above
the energy threshold of 4 × 1018 eV. The function CðEÞ is
the normalization factor from the double Gaussian. The
result of the fit for the parameters a and b are shown in
Fig. 1. The fluctuations are shown in Fig. 2. The distri-
bution of the number of muons and the PDF in the
individual energy bins can be found in the Supplemental
Material [17].
The dominant systematic uncertainties of σ come from

the uncertainties in the resolutions sE and sμ. For sμ we
estimate the uncertainty using simulations and data. In
simulations, the uncertainty was estimated by the spread in
a sample of simulated showers, where each shower is
reconstructed multiple times, each time changing only the
impact point at the ground. For data, we reconstruct the
same event multiple times, leaving out the signals from one
of the detector stations. The average relative resolution

hsμ=Rμi and its systematic uncertainty is thus ð10& 3Þ%
at 1019 eV.
We verified the values of sE by studying the difference in

the energy reconstruction of events measured independently
by two or more FD stations. The width of the distribution of
these energy differences is found to be compatible with sE.
We therefore take the statistical 1-σ uncertainties of this
cross check as a conservative upper limit of the systematic
uncertainty of sE [27]. The average relative energy reso-
lution hsE=Ei is about ð8.4& 2.9Þ% at 1019 eV. We have
further confirmed that there are no significant contributions
to the fluctuations from differences between the individual
FD stations, neither related to the longtime performance
evolution of the SD and FD detectors.
Any residual electromagnetic component in the signal

would affect the lower zenith angles more. We therefore
split the event sample at the median zenith angle (66°) and
compare the resulting fluctuations. We find no significant
difference between the more and the less inclined sample.
In another test, we do find a small modulation of hRμi

with the azimuth angle (<1%), which we correct for. This
modulation is related to the approximations used in the
reconstruction, which deal with the azimuthal asymmetry
of the muon densities at the ground due to the Earth’s
magnetic field [3]. Finally, we have run an end-to-end
validation of the whole analysis method described in this
Letter on samples of simulated proton, helium, oxygen, and
iron showers.
Because of the almost linear relation between Rμ and E,

the systematic uncertainty on σ due to the uncertainty of the
absolute energy scale of 14% [25] practically cancels out in
the relative fluctuations. The systematic uncertainty in the
absolute scale of Rμ of 11% [5] drops out for the same
reason. The systematic effects for the bin around 1019 eV
are summarized in Table I. Over all energies, the systematic
uncertainties are below 8%.
Results and discussion.—The best-fit value for the

average relative number of muons at 1019 eV (parameter a)
is hRμið1019eVÞ¼1.86&0.02ðstatÞþ0.36

−0.31ðsystÞ. For the
slope (parameter b) we find dhlnRμi=d lnE ¼ 0.99&
0.02ðstatÞ þ0.03

−0.03ðsystÞ. These values are consistent with
the values previously reported [5,17].

FIG. 2. Measured relative fluctuations in the number of muons
as a function of the energy and the predictions from three
interaction models for proton (red) and iron (blue) showers.
The gray band represents the expectations from the measured
mass composition interpreted with the interaction models.
The statistical uncertainty in the measurement is represented
by the error bars. The total systematic uncertainty is indicated by
the square brackets.

TABLE I. Contributions to the systematic uncertainty in the
relative fluctuations around 1019 eV (1018.97–1019.15 eV). The
central value is σ=hRμi ¼ 0.102& 0.029ðstatÞ & 0.007ðsystÞ.

Source of uncertainty Uncertainty (%)

E absolute scale hEi <0.1
E resolution sE 4.6
Rμ absolute scale hRμi 0.5
Rμ resolution sμ 5.2
Rμ azimuthal modulation hRμiðϕÞ 0.5

Total systematics 7.0

PHYSICAL REVIEW LETTERS 126, 152002 (2021)

152002-6

(Phys. Rev. Lett. 126 (2021) 152002)

24 4. Properties of the FD photomultipliers

(a) (b)

Figure 4.1.: (a) Schema of a PMT. The names of the different components are indicated as well
as the the first stages of the electron multiplication process. Taken from [50]. (b)
Measured quantum efficiency Q as function of the wavelength for two Hamamatsu
models of newer generation of PMTs with a super-bialkali photocathode, i.e. higher
quantum efficiency, as well as of a Photonis XP 3062 PMT. For the latter, Q is about
(29.5 ± 1)% at 375 nm. Taken from [51].

first dynode by an electric field between the photocathode and the first dynode.
By hitting the latter, they kick out further electrons, which again are accelerated
thanks to an electric field between the first and second dynode. This process is
repeated at every dynode resulting in a multiplication process of electrons. At
the end, the electrons hit the anode producing an electric current which can be
amplified, converted and measured.

The gain G is the multiplication factor of a PMT, i.e. how many electrons arrive
at the anode for one photoelectron produced at the photocathode. In other words

G =
nK
nA

=
IK
IA

, (4.1)

where nK is the number of produced photoelectrons at the cathode and nA the
number of electrons reaching the anode. IK and IA are the corresponding cur-
rents at the cathode and anode induced by these electrons. The whole am-
plification process will be explained in the following paragraph similar to the
explanations given in [52].

If the number of photoelectrons that strike the first dynode is nf and the gain
of the first dynode is g1, the number of resulting secondary electrons is nf g1.
If the second dynode has a gain g2, the number of emitted electrons from the
second dynode is then nf g1 g2. The repetition of this process for N dynodes
leads to the final number of electrons at the anode

nA = nf

N

∏
i=1

gi. (4.2)

The initial photoelectrons have to be focused on the first dynode. The efficiency
of this process is given by the input system collection efficiency η. Thus, the
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Fig. 12 Mean logarithmic muon density 〈ln ρ35〉 as a function of the
mean depth of shower maximum 〈Xmax〉 for simulations with primary
energies of 1017.5 eV (a) and 1018 eV (b) compared to Auger Observa-
tory measurements with the FD

the relationship between 〈Xmax〉 and 〈ln ρ35〉 can be repre-
sented by a line for each hadronic interaction model, as shown
in Fig. 12 at two different energies, 1017.5 eV and 1018 eV.
The 〈Xmax〉 data are extracted from [32]. It is apparent that
both models fail to reproduce the data. A difference of 38%
in the muon number is observed at 1017.5 eV and 1018 eV
compared to EPOS- LHC predictions, while the difference
is larger compared to the QGSJetII- 04 predictions. In both
cases, data show that the analyzed hadronic interaction mod-
els produce fewer muons than those observed in EAS. All
these results are collected in Tab. 2 together with the cor-
responding statistical and systematic uncertainties. It should
be stressed, nevertheless, that in the above comparison the
true Monte-Carlo energy was used for the simulated data
because the hybrid reconstruction of the energy (as done for
real data) is hampered by the failure in reproducing the num-
ber of muons impinging the SD stations [35].

The results presented in Figs. 10 and 11 are the first ones
for the Pierre Auger Observatory on the muon content of the
air showers obtained in this energy range. They allow us to
extend to lower energies results previously reported at higher
energies, based on the muon number estimation in inclined
air showers [36,37]. This is because at zenith angles exceed-

Table 2 Ratio fµ = exp (〈ln ρ35〉UMD − 〈ln ρ35〉sim) of the muon con-
tent in data and simulations with statistical and systematic uncertainties
at primary energies of 1017.5 eV and 1018 eV for the EPOS- LHC and
QGSJetII- 04 hadronic interaction models

Energy Model fµ

1017.5 eV EPOS- LHC 1.38 ± 0.04(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.50 ± 0.04(stat) ± 0.23
0.20(sys)

1018.0 eV EPOS- LHC 1.38 ± 0.12(stat) ± 0.21
0.18(sys)

QGSJetII- 04 1.53 ± 0.13(stat) ± 0.23
0.20(sys)

ing ≈ 60◦, EASs provide a direct measurement of the muon
number at the ground due to the absorption of the electromag-
netic component in the large atmospheric depth traversed.
The muon number for each shower can then be derived by
scaling a simulated reference profile of the muon density
distribution at the ground to the data. It is worth noting that
the measurements obtained pertain to muons with energies
above 0.16 GeV (Cherenkov threshold in water) that reach
the Observatory site located at an altitude of 1425 m, while
the measurements obtained in this work pertain to muons
with energies ∼ 1 GeV for vertical incidence.

Given the different conditions of measurements that select
muons with different energy distributions, it proves difficult
to compare directly the results presented here and the ones
reported in [36,37]. An indirect manner is required. Follow-
ing [38], we make use of the z-scale factor to perform the
comparisons,

z = 〈ln x〉 − 〈ln x〉p

〈ln x〉Fe − 〈ln x〉p
(18)

where x is the muon-density estimator (that is, ρ35 in this
work and Rµ in [37]). Here, the symbols 〈·〉p and 〈·〉Fe stand
for the expected muon densities for proton and iron showers,
simulated with a given model and accounting for detector
effects. The normalization by the difference between iron
and proton simulations allows the comparison between dif-
ferent types of quantities by reducing the possible systematic
differences.

The results of both analyses are shown in Fig. 13, using
two distinct generator models of hadronic interactions to
predict 〈ln ρ35〉 for proton and iron: EPOS- LHC (a) and
QGSJetII- 04 (b). There is a gap between ≈ 2 × 1018 eV
(UMD-based analysis running out of statistics) and ≈ 4 ×
1018 eV (threshold of the inclined EAS-based analysis), but
overall, both analyses give similar results in terms of z-factor.

Assuming the validity of the superposition model, the
measurement of 〈Xmax〉 by the FD converted into an aver-
age logarithmic mass 〈ln A〉 and finally into z = 〈ln A〉/ln 56

can be used to establish the reference values of the z-factor.
These are shown as the diamond markers in Fig. 13. For
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However, relative fluctuations in the muon 
number are consistent with data. 

(Fluctuations are driven by first interactions, 
PMT analogy)

Hybrid measurement of inclined air showers
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⇢ (EeV) # 3? 3I 3 U3 [�] X3 [�] P(� AU1 )
4-8 106, 290 0.01+0.006

�0.004 �0.012 ± 0.008 0.016+0.008
�0.005 97 ± 29 �48+23

�22 1.4 ⇥ 10�1

8-16 32, 794 0.055+0.011
�0.009 �0.03 ± 0.01 0.063+0.013

�0.009 95 ± 10 �28+12
�13 3.1 ⇥ 10�7

16-32 9, 156 0.072+0.021
�0.016 �0.07 ± 0.03 0.10+0.03

�0.02 81 ± 15 �43+14
�14 7.5 ⇥ 10�4

�8 44, 398 0.059+0.009
�0.008 �0.042 ± 0.013 0.073+0.011

�0.009 95 ± 8 �36+9
�9 5.1 ⇥ 10�11

�32 2, 448 0.11+0.04
�0.03 �0.12 ± 0.05 0.16+0.05

�0.04 139 ± 19 �47+16
�15 1.0 ⇥ 10�2

Table 1: 3D dipole reconstruction. Shown are the number of events # , dipole components in the equatorial
plane 3? and along the rotation axis of the Earth 3I , the total 3D amplitude 3, dipole direction (U3 , X3) and
the probability to get a larger amplitude of AU1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45� radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45� radius is presented in the right panel of the same figure
in equatorial coordinates. The dipole direction points ⇠ 115� away from the direction of the
Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous
publications [6, 7].

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The
evolution can be described as done in [6] by 3 = 310(⇢/10 EeV)V with 310 = 0.050 ± 0.007 and
V = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the di�erent energy bins
is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per
unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of
the dipole direction as a function of energy considering the present accuracy. The growth of the
dipole amplitude as a function of energy can be a consequence of the larger relative contribution
from nearby sources to the flux at higher energies with respect to the integrated flux from the
more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources
at larges distances is expected to result from the interaction of UHECRs with the background
radiation [19, 20]. Interpretation of the reconstructed dipole directions for the di�erent energy
bins requires taking into account the magnetic deflections of the particles during their trajectory
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Figure 2: Left panel: Energy dependence of the dipolar amplitude measured above 4 EeV. Right panel:
Reconstructed dipole directions in di�erent energy bins and corresponding 68% C.L. uncertainty, in Galactic
coordinates. The dots indicate the positions of 2MRS galaxies within 100 Mpc.

from the sources up to Earth, being a di�cult task because of our still uncertain knowledge about
cosmic ray composition and Galactic and extragalactic magnetic fields. Nevertheless, by using a
detailed large scale structure matter density field [21] derived from the CosmicFlows-2 catalog of
peculiar velocities [22], an estimation of the magnitude, direction and energy dependence of the
dipolar anisotropy as a function of energy was obtained by performing a combined fit of the dipole
components and cosmic ray composition [23].

Allowing for the presence of a quadrupole, the reconstructed dipolar and quadrupolar com-
ponents of the flux for all energy bins were obtained as in [9] and reported in Table 2. The five
independent quadrupolar components are not significant in any of the energy bins.

3.2 Angular Power Spectrum

The angular distribution �(n) of cosmic rays observed by an experiment in some direction n

can be decomposed by separating the dominant monopole contribution from the anisotropic one,
�(n), as

�(n) = #

4c 51
, (n) [1 + �(n)] , (3)

where , (n) is the relative coverage of the observatory, 51 =
Ø
3n , (n)/4c the fraction of

the sky e�ectively covered by the observatory and # the total number of observed cosmic rays.
Unfortunately, due to the partial sky coverage of the observatory, the estimation of the individual
0✓< coe�cients of the spherical harmonic expansion of �(n), and its angular power spectrum
⇠✓ =

Õ
✓

<=�✓ |0✓< |2/(2✓ + 1), cannot be carried out with relevant resolution as soon as ✓<0G >

2. However, one can make additional assumptions2 about the ensemble-averaged expectation
values of the multipole components [24] and it is possible to recover the angular power spectrum
coe�cients. In this situation, the pseudo-power spectrum ⇠̃✓ =

Õ
✓

<=�✓ |0̃✓< |2/(2✓ + 1) (which
is directly measurable, obtained from 0̃✓< =

Ø
3n , (n)�(n).✓<(n)) is related to the real power

spectrum through

⇠̃✓ =
’
✓
0
"✓✓

0⇠✓
0 . (4)

2For a more detailed discussion about these assumptions see [25].
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! (EeV) " #⊥ #! # $" [◦] %" [◦] P(≥ &#1 )
4-8 106, 290 0.01+0.006

−0.004 −0.012 ± 0.008 0.016+0.008
−0.005 97 ± 29 −48+23

−22 1.4 × 10−1

8-16 32, 794 0.055+0.011
−0.009 −0.03 ± 0.01 0.063+0.013

−0.009 95 ± 10 −28+12
−13 3.1 × 10−7

16-32 9, 156 0.072+0.021
−0.016 −0.07 ± 0.03 0.10+0.03

−0.02 81 ± 15 −43+14
−14 7.5 × 10−4

≥8 44, 398 0.059+0.009
−0.008 −0.042 ± 0.013 0.073+0.011

−0.009 95 ± 8 −36+9
−9 5.1 × 10−11

≥32 2, 448 0.11+0.04
−0.03 −0.12 ± 0.05 0.16+0.05

−0.04 139 ± 19 −47+16
−15 1.0 × 10−2

Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
the probability to get a larger amplitude of &#1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85

publications [6, 7].86

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87

evolution can be described as done in [6] by # = #10(!/10 EeV)$ with #10 = 0.050 ± 0.007 and88

' = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the different energy bins89

is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per90

unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the different energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98
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Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
the probability to get a larger amplitude of &#1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85

publications [6, 7].86

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87

evolution can be described as done in [6] by # = #10(!/10 EeV)$ with #10 = 0.050 ± 0.007 and88

' = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the different energy bins89

is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per90

unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the different energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98
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Figure 1. Left above: The density field of the local universe derived from CosmicFlow-2 (Hoffman et al. 2018) in Super-
galactic coordinates; a 3D interactive view is available at [https://sketchfab.com/3d-models/quasi-linear-construction-of-the-density-field-
91448f58ed5b4a30b5dc270a34fb4352] Left below: The intensity map of the flux illuminating the Galaxy ≥ 8 EeV, for sources following
the CosmicFlow-2 density field using the Eq. 1, “d90”, treatment; the pattern is virtually identical for the sharp-horizon treatment, but with
maximum relative flux =1.47 instead of 1.67 as in “d90”. The direction of the dipole component is not far from the CMB dipole. Right panels:
The colored lines are the percentage contribution to the observed UHECR flux coming from the indicated distance bins, as a function of energy,
for the parameters of the best-fitting d90 (above) and sharp-horizon SH* (below) models detailed in Table 1. The dots represent the average
over the energy bin indicated at the top. The actual calculation uses 1 Mpc bins in distance and 0.1 bins in log10(E).

discussed in Table 1; the meaning should be clear in context.)
Even if the source spectrum were known, Eq. 1 is not an ex-
act description because the energy loss rate evolves during
evolution as the composition and energy change. Moreover
the d90(A, E) values available in the literature are integrated
above a threshold rather than applying to a bin of energy.
A future more accurate treatment needs to take this into ac-
count as well as taking the source spectrum as an unknown
to be self-consistently fit.

We explore the possible spreading of the source images
and reduction in horizon due to diffusion in the EGMF, us-
ing the sharp-horizon treatment. We adopt the simplest hy-
pothesis that the universe is filled with homogeneous and
isotropic turbulent magnetic fields. While the turbulence
level of the EGMF is still unknown, upper limits obtained by
various measurements or arguments exist (Durrer & Neronov
2013). We adopt a Kolmogorov spectrum and – to fully

cover the possible parameter space – we consider rms ran-
dom field strength 0.08 ≤ BEG ≤ 10 nG and coherence
length 0.08 ≤ λEG ≤ 0.5 Mpc. The diffusion coefficient,
DEG, and indeed all magnetic deflections, depends on rigid-
ity, E/Z; in the relevant rigidity domain, DEG is proportional
to
(
E/ZBEGλ0.5

EG

)2
(Globus et al. 2008). The intensity profile

of a single source depends on the diffusion coefficient and on
the distance to the source; it is calculated by a method fol-
lowing the diffusion of light in scattering media, that allows
to take into account the transition between quasi-linear and
diffusive regimes, as detailed in Appendix A.

For a given assumed EGMF, composition and energy, and
adopting either the sharp-horizon or d90 attenuation, we cal-
culate the weight of a 1-Mpc-thick shell of matter at dis-
tance z in the total observed CR flux at the given (A, E). The
final illumination map for that (A, E) and attenuation model
is then the weighted sum of the surface mass density in each
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Figure 6. Comparison of the dipole amplitude as a function of energy with predictions from models (Harari et al. 2015) with
mixed composition and a source density ρ = 10−4 Mpc−3. Cosmic rays are propagated in an isotropic turbulent extragalactic
magnetic field with rms amplitude of 1 nG and a Kolmogorov spectrum with coherence length equal to 1 Mpc (with the results
having only mild dependence on the magnetic-field strength adopted). The gray line indicates the mean value for simulations
with uniformly distributed sources, while the blue one shows the mean value for realizations with sources distributed as the
galaxies in the 2MRS catalog. The bands represent the dispersion for different realizations of the source distribution. The steps
observed reflect the rigidity cutoff of the different mass components.

Regarding the possible origin of the dipolar CR anisotropy, we note that the relative motion of the observer with
respect to the rest frame of cosmic rays is expected to give rise to a dipolar modulation of the flux, known as the
Compton–Getting effect (Compton & Getting 1935). For particles with a power-law energy spectrum dΦ/dE ∝ E−γ ,
the resulting dipolar amplitude is dCG = (v/c)(γ + 2), with v/c the velocity of the observer normalized to the speed
of light. In particular, if the rest frame of the cosmic rays were the same as that of the cosmic microwave background,
the dipole amplitude would be dCG " 0.006 (Kachelriess & Serpico 2006), an order of magnitude smaller than the
observed dipole above 8 EeV. Thus, the Compton–Getting effect is predicted to give only a sub-dominant contribution
to the dipole measured for energies above 8 EeV.
Plausible explanations for the observed dipolar-like distribution include the diffusive propagation from the closest

extragalactic source(s) or that it be due to the inhomogeneous distribution of the sources in our cosmic neighborhood
(Giler et al. 1980; Berezinsky et al. 1990; Harari et al. 2014, 2015). The expected amplitude of the resulting dipole
depends in these cases mostly on the number density of the source distribution, ρ, with only a mild dependence on the
amplitude of the extragalactic magnetic field. For homogeneous source distributions with ρ ∼ (10−5 − 10−3) Mpc−3,
spanning the range between densities of galaxy clusters, jetted radio-galaxies, Seyfert galaxies and starburst galaxies,
the dipole amplitude turns out to be at the level of few percent at E ∼ 10 EeV, both for scenarios with light (Harari
et al. 2014) and with mixed CR compositions (Harari et al. 2015). A density of sources smaller by a factor of ten leads
on average to a dipolar amplitude larger by approximately a factor of two. An enhanced anisotropy could result if the
sources were to follow the inhomogeneous distribution of the local galaxies, with a dipole amplitude larger by a factor
of about two with respect to the case of a uniform distribution of the same source density. The expected behavior is
exemplified in Figure 6 where we have included the observed dipole amplitude values together with the predictions
from Harari et al. (2015) for a scenario with five representative mass components (H, He, C, Si and Fe) having an E−2

spectrum with a sharp rigidity cutoff at 6 EV and adopting a source density ρ = 10−4 Mpc−3 (ignoring the effects of
the Galactic magnetic field). The data show indications of a growth in the amplitude with increasing energy that is
similar to the one obtained in the models. Note that this kind of scenario is also in line with the composition favored
by Pierre Auger Observatory data (The Pierre Auger Collaboration 2017c).
Regarding the direction of the dipolar modulation, it is important to take into account the effect of the Galactic

magnetic field on the trajectories of extragalactic cosmic rays reaching the Earth.4 The facts that the Galactic magnetic

4 These deflections can not only lead to a significant change in the dipole direction and in its amplitude, but they also generate some
higher order harmonics even if pure dipolar modulation is only present outside the Galaxy (Harari et al. 2010).
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Large-scale and multipolar anisotropies at the Pierre Auger Observatory R. M. de Almeida

! (EeV) " #⊥ #! # $" [◦] %" [◦] P(≥ &#1 )
4-8 106, 290 0.01+0.006

−0.004 −0.012 ± 0.008 0.016+0.008
−0.005 97 ± 29 −48+23

−22 1.4 × 10−1

8-16 32, 794 0.055+0.011
−0.009 −0.03 ± 0.01 0.063+0.013

−0.009 95 ± 10 −28+12
−13 3.1 × 10−7

16-32 9, 156 0.072+0.021
−0.016 −0.07 ± 0.03 0.10+0.03

−0.02 81 ± 15 −43+14
−14 7.5 × 10−4

≥8 44, 398 0.059+0.009
−0.008 −0.042 ± 0.013 0.073+0.011

−0.009 95 ± 8 −36+9
−9 5.1 × 10−11

≥32 2, 448 0.11+0.04
−0.03 −0.12 ± 0.05 0.16+0.05

−0.04 139 ± 19 −47+16
−15 1.0 × 10−2

Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
the probability to get a larger amplitude of &#1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85

publications [6, 7].86

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87

evolution can be described as done in [6] by # = #10(!/10 EeV)$ with #10 = 0.050 ± 0.007 and88

' = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the different energy bins89

is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per90

unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the different energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98
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Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
the probability to get a larger amplitude of &#1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85
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is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per90
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Figure 1. Left above: The density field of the local universe derived from CosmicFlow-2 (Hoffman et al. 2018) in Super-
galactic coordinates; a 3D interactive view is available at [https://sketchfab.com/3d-models/quasi-linear-construction-of-the-density-field-
91448f58ed5b4a30b5dc270a34fb4352] Left below: The intensity map of the flux illuminating the Galaxy ≥ 8 EeV, for sources following
the CosmicFlow-2 density field using the Eq. 1, “d90”, treatment; the pattern is virtually identical for the sharp-horizon treatment, but with
maximum relative flux =1.47 instead of 1.67 as in “d90”. The direction of the dipole component is not far from the CMB dipole. Right panels:
The colored lines are the percentage contribution to the observed UHECR flux coming from the indicated distance bins, as a function of energy,
for the parameters of the best-fitting d90 (above) and sharp-horizon SH* (below) models detailed in Table 1. The dots represent the average
over the energy bin indicated at the top. The actual calculation uses 1 Mpc bins in distance and 0.1 bins in log10(E).

discussed in Table 1; the meaning should be clear in context.)
Even if the source spectrum were known, Eq. 1 is not an ex-
act description because the energy loss rate evolves during
evolution as the composition and energy change. Moreover
the d90(A, E) values available in the literature are integrated
above a threshold rather than applying to a bin of energy.
A future more accurate treatment needs to take this into ac-
count as well as taking the source spectrum as an unknown
to be self-consistently fit.

We explore the possible spreading of the source images
and reduction in horizon due to diffusion in the EGMF, us-
ing the sharp-horizon treatment. We adopt the simplest hy-
pothesis that the universe is filled with homogeneous and
isotropic turbulent magnetic fields. While the turbulence
level of the EGMF is still unknown, upper limits obtained by
various measurements or arguments exist (Durrer & Neronov
2013). We adopt a Kolmogorov spectrum and – to fully

cover the possible parameter space – we consider rms ran-
dom field strength 0.08 ≤ BEG ≤ 10 nG and coherence
length 0.08 ≤ λEG ≤ 0.5 Mpc. The diffusion coefficient,
DEG, and indeed all magnetic deflections, depends on rigid-
ity, E/Z; in the relevant rigidity domain, DEG is proportional
to
(
E/ZBEGλ0.5

EG

)2
(Globus et al. 2008). The intensity profile

of a single source depends on the diffusion coefficient and on
the distance to the source; it is calculated by a method fol-
lowing the diffusion of light in scattering media, that allows
to take into account the transition between quasi-linear and
diffusive regimes, as detailed in Appendix A.

For a given assumed EGMF, composition and energy, and
adopting either the sharp-horizon or d90 attenuation, we cal-
culate the weight of a 1-Mpc-thick shell of matter at dis-
tance z in the total observed CR flux at the given (A, E). The
final illumination map for that (A, E) and attenuation model
is then the weighted sum of the surface mass density in each
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Figure 6. Comparison of the dipole amplitude as a function of energy with predictions from models (Harari et al. 2015) with
mixed composition and a source density ρ = 10−4 Mpc−3. Cosmic rays are propagated in an isotropic turbulent extragalactic
magnetic field with rms amplitude of 1 nG and a Kolmogorov spectrum with coherence length equal to 1 Mpc (with the results
having only mild dependence on the magnetic-field strength adopted). The gray line indicates the mean value for simulations
with uniformly distributed sources, while the blue one shows the mean value for realizations with sources distributed as the
galaxies in the 2MRS catalog. The bands represent the dispersion for different realizations of the source distribution. The steps
observed reflect the rigidity cutoff of the different mass components.

Regarding the possible origin of the dipolar CR anisotropy, we note that the relative motion of the observer with
respect to the rest frame of cosmic rays is expected to give rise to a dipolar modulation of the flux, known as the
Compton–Getting effect (Compton & Getting 1935). For particles with a power-law energy spectrum dΦ/dE ∝ E−γ ,
the resulting dipolar amplitude is dCG = (v/c)(γ + 2), with v/c the velocity of the observer normalized to the speed
of light. In particular, if the rest frame of the cosmic rays were the same as that of the cosmic microwave background,
the dipole amplitude would be dCG " 0.006 (Kachelriess & Serpico 2006), an order of magnitude smaller than the
observed dipole above 8 EeV. Thus, the Compton–Getting effect is predicted to give only a sub-dominant contribution
to the dipole measured for energies above 8 EeV.
Plausible explanations for the observed dipolar-like distribution include the diffusive propagation from the closest

extragalactic source(s) or that it be due to the inhomogeneous distribution of the sources in our cosmic neighborhood
(Giler et al. 1980; Berezinsky et al. 1990; Harari et al. 2014, 2015). The expected amplitude of the resulting dipole
depends in these cases mostly on the number density of the source distribution, ρ, with only a mild dependence on the
amplitude of the extragalactic magnetic field. For homogeneous source distributions with ρ ∼ (10−5 − 10−3) Mpc−3,
spanning the range between densities of galaxy clusters, jetted radio-galaxies, Seyfert galaxies and starburst galaxies,
the dipole amplitude turns out to be at the level of few percent at E ∼ 10 EeV, both for scenarios with light (Harari
et al. 2014) and with mixed CR compositions (Harari et al. 2015). A density of sources smaller by a factor of ten leads
on average to a dipolar amplitude larger by approximately a factor of two. An enhanced anisotropy could result if the
sources were to follow the inhomogeneous distribution of the local galaxies, with a dipole amplitude larger by a factor
of about two with respect to the case of a uniform distribution of the same source density. The expected behavior is
exemplified in Figure 6 where we have included the observed dipole amplitude values together with the predictions
from Harari et al. (2015) for a scenario with five representative mass components (H, He, C, Si and Fe) having an E−2

spectrum with a sharp rigidity cutoff at 6 EV and adopting a source density ρ = 10−4 Mpc−3 (ignoring the effects of
the Galactic magnetic field). The data show indications of a growth in the amplitude with increasing energy that is
similar to the one obtained in the models. Note that this kind of scenario is also in line with the composition favored
by Pierre Auger Observatory data (The Pierre Auger Collaboration 2017c).
Regarding the direction of the dipolar modulation, it is important to take into account the effect of the Galactic

magnetic field on the trajectories of extragalactic cosmic rays reaching the Earth.4 The facts that the Galactic magnetic

4 These deflections can not only lead to a significant change in the dipole direction and in its amplitude, but they also generate some
higher order harmonics even if pure dipolar modulation is only present outside the Galaxy (Harari et al. 2010).
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- mass composition, and its energy dependence

- the local source distribution

- the magnetic horizon for cosmic ray of 
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Mass scenario similar to Auger measurements:

(average rigidity still grows with energy, despite Z increasing)

e.g. Harari, Mollerach, Roulet PRD92 06314 (2015)
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UHECR sky > 32 EeV viewed from the Pierre Auger Observatory Jonathan Biteau

Catalog !th [EeV] Ψ [deg] " [%] TS Post-trial #-value
All galaxies (IR) 40 24+16

−8 15+10
−6 18.2 6.7 × 10−4

Starbursts (radio) 38 25+11
−7 9+6

−4 24.8 3.1 × 10−5

All AGNs (X-rays) 41 27+14
−9 8+5

−4 19.3 4.0 × 10−4

Jetted AGNs ($-rays) 40 23+9
−8 6+4

−3 17.3 1.0 × 10−3

Table 2: The results of the searches for anisotropies against catalogs. The second to fourth columns provide
the threshold energy, the equivalent top-hat radius and the signal fraction maximizing the local TS, or
post-trial #-value, shown in the fifth and sixth columns.

on the analysis results. The catalogs are fully complementary: 2MASS infrared observations of
“all” galaxies provide, through stellar mass, a deep view on integrated star-formation activity; radio
observations of bright starburst galaxies provide a more instantaneous view on ongoing starforming
activity; X-ray observations provide a census of “all” active galaxies, be they jetted or non-jetted;
$-ray observations finally focus on a sub-sample of jetted active galaxies.

To determine whether the flux patterns from these catalogs contribute to the anisotropy in the
toe region, we perform an unbinned maximum-likelihood ratio test [8] between the null hypothesis,
isotropy, and the test hypothesis, that is a catalog contribution added to an isotropic component,
where both hypotheses account for the exposure of the Observatory. The flux of each source is
weighted according to the UHECR attenuation expected from the best-fit model of the spectral and
composition data from [13]. The overall UHECR flux contribution of the catalog is normalized to
a free amplitude " (that of the isotropic component is 1-") and the catalog flux pattern is smoothed
with a Fisher - von Mises function on a Gaussian angular scale, %. The local test statistic, TS,
corresponding to the maximum likelihood ratio is shown as a function of energy threshold in Fig. 2,
right. The TS profiles of the catalogs display an energy dependence similar to that observed in
the Centaurus region, obtained by profiling the pre-trial #-value in Fig. 2, left, and penalizing for
the scan over the angular scale. As reported in Table 2, the signal is maximal for all four catalogs
above an energy threshold close to 40 EeV. For the sake of comparison with other results, the best-fit
Gaussian angular scales are converted to equivalent top-hat radii as Ψ = 1.59× % [17], with best-fit
values at Ψ ≈ 25◦. The signal fractions range from 6 to 15%. The local TS range between 17 and
25, yielding post-trial #-values between 10−3 (3.1&) and 3 × 10−5 (4.0&), accounting for the scan
in energy threshold and the two free parameters (", %).

Although similar parameters are inferred for the four catalogs, the TS and corresponding
post-trial #-values show marked differences. A quantitative comparison between the catalogs is
performed, as in [8], by testing a composite model including contributions from catalog #1 and
catalog #2 against a model including a contribution from catalog #1 only. A $-ray only, X-ray
only, or IR only contribution is disfavored with respect to a composite model including a radio
contribution from starburst galaxies above 38 − 41 EeV at confidence levels varying between 2
and 3&. While there is no significant indication for a preferred catalog, such differences can be
qualitatively understood from a comparison of the observed flux map shown in Fig. 1 with the best-
fit flux models shown in Fig. 3. The X-ray and $-ray models of all and jetted AGNs are dominated
by a contribution from Centaurus A, with additional mild contributions close to the edge of the
FoV from NGC 4151 (so-called “Eye of Sauron”) for the former and from the blazar Markarian 421
and the radio-galaxy NGC 1275 for the latter. The possible mild excess south of the edge of the
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UHECR sky > 32 EeV viewed from the Pierre Auger Observatory Jonathan Biteau

Catalog !th [EeV] Ψ [deg] " [%] TS Post-trial #-value
All galaxies (IR) 40 24+16

−8 15+10
−6 18.2 6.7 × 10−4

Starbursts (radio) 38 25+11
−7 9+6

−4 24.8 3.1 × 10−5

All AGNs (X-rays) 41 27+14
−9 8+5

−4 19.3 4.0 × 10−4

Jetted AGNs ($-rays) 40 23+9
−8 6+4

−3 17.3 1.0 × 10−3

Table 2: The results of the searches for anisotropies against catalogs. The second to fourth columns provide
the threshold energy, the equivalent top-hat radius and the signal fraction maximizing the local TS, or
post-trial #-value, shown in the fifth and sixth columns.

on the analysis results. The catalogs are fully complementary: 2MASS infrared observations of
“all” galaxies provide, through stellar mass, a deep view on integrated star-formation activity; radio
observations of bright starburst galaxies provide a more instantaneous view on ongoing starforming
activity; X-ray observations provide a census of “all” active galaxies, be they jetted or non-jetted;
$-ray observations finally focus on a sub-sample of jetted active galaxies.

To determine whether the flux patterns from these catalogs contribute to the anisotropy in the
toe region, we perform an unbinned maximum-likelihood ratio test [8] between the null hypothesis,
isotropy, and the test hypothesis, that is a catalog contribution added to an isotropic component,
where both hypotheses account for the exposure of the Observatory. The flux of each source is
weighted according to the UHECR attenuation expected from the best-fit model of the spectral and
composition data from [13]. The overall UHECR flux contribution of the catalog is normalized to
a free amplitude " (that of the isotropic component is 1-") and the catalog flux pattern is smoothed
with a Fisher - von Mises function on a Gaussian angular scale, %. The local test statistic, TS,
corresponding to the maximum likelihood ratio is shown as a function of energy threshold in Fig. 2,
right. The TS profiles of the catalogs display an energy dependence similar to that observed in
the Centaurus region, obtained by profiling the pre-trial #-value in Fig. 2, left, and penalizing for
the scan over the angular scale. As reported in Table 2, the signal is maximal for all four catalogs
above an energy threshold close to 40 EeV. For the sake of comparison with other results, the best-fit
Gaussian angular scales are converted to equivalent top-hat radii as Ψ = 1.59× % [17], with best-fit
values at Ψ ≈ 25◦. The signal fractions range from 6 to 15%. The local TS range between 17 and
25, yielding post-trial #-values between 10−3 (3.1&) and 3 × 10−5 (4.0&), accounting for the scan
in energy threshold and the two free parameters (", %).

Although similar parameters are inferred for the four catalogs, the TS and corresponding
post-trial #-values show marked differences. A quantitative comparison between the catalogs is
performed, as in [8], by testing a composite model including contributions from catalog #1 and
catalog #2 against a model including a contribution from catalog #1 only. A $-ray only, X-ray
only, or IR only contribution is disfavored with respect to a composite model including a radio
contribution from starburst galaxies above 38 − 41 EeV at confidence levels varying between 2
and 3&. While there is no significant indication for a preferred catalog, such differences can be
qualitatively understood from a comparison of the observed flux map shown in Fig. 1 with the best-
fit flux models shown in Fig. 3. The X-ray and $-ray models of all and jetted AGNs are dominated
by a contribution from Centaurus A, with additional mild contributions close to the edge of the
FoV from NGC 4151 (so-called “Eye of Sauron”) for the former and from the blazar Markarian 421
and the radio-galaxy NGC 1275 for the latter. The possible mild excess south of the edge of the

6

$�FORVHU�ORRN�DW�WKH�FDWDORJ�EDVHG�PRGHOV

:KLFK�8+(&5�RYHUGHQVLWLHV�GR�WKH�PRGHOV�JUDVS"
&HQWDXUXV�UHJLRQ�LQ�DOO�PRGHOV��0�����&HQ�$���1*&������DW�a��0SF�

*DODFWLF�6RXWK�SROH�WHSLG�VSRW�LQ�VWDUEXUVW�PRGHO��1*&�����DW�a��0SF�

1R�KRWVSRW�DW��O�E��a������������IURP�,5�PRGHO��9LUJR�FOXVWHU�DW�a���0SF�

2EVHUYHG�!����(H9

%HVW�ILW�PRGHOV�!�������(H9�

�

'LVFODLPHU��TXDOLWDWLYH�FRPSDULVRQ
6WDUEXUVWV���,5�;�UD\�ܵ�UD\�YV�,5�;�UD\�ܵ�UD\

\LHOG�RQO\�PLOG�����ı��SUHIHUHQFH�IRU�VWDUEXUVWV

Model flux map

All data until end of 2020, optimized quality cuts: 120,000 km2 sr yr

4.0σ

3.1σ

Growth of test statistic (TS) compatible with linear increase 
Discovery threshold of 5σ expected in 2025 – 2030 (Phase II) 
Other means to increase sensitivity (Auger 85% sky coverage)

(Jonathan Biteau)

Range of post-trial excesses

Growth of test-statistic (TS) compatible with a linear increase, with a  
result expected in 2025-2030 with the same analysis.
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15ICRC21 307 (2021)  
Ap. J. Lett 853 L29 (2018)

Phase II sensitivity improvements include:  
    - 100% duty cycle for mass information (AugerPrime) 
    -  including more than 85% of the sky (collaboration with TA and TAx4)
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Growth of “signal” consistent with linear

If real, it doesn’t imply galactic sources. 
 
It might be the result of the interplay of

source directions, the mass-dependent 
horizon, and the GMF.

Phase II

- study will benefit from more 

data, including re-analysed 
existing SD data

16ICRC21 321 (2021)

ICRC21 321 (2021)

ICRC21 307 (2021)

Ap. J. Lett 853 L29 (2018)

Large Scale
Exposure 110,000 km2 sr yr

Up until end of 2020, θ/°<80

Highest energies - Catalogs Anisotropy searches at highest energies – catalogs
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UHECR sky > 32 EeV viewed from the Pierre Auger Observatory Jonathan Biteau

Catalog !th [EeV] Ψ [deg] " [%] TS Post-trial #-value
All galaxies (IR) 40 24+16

−8 15+10
−6 18.2 6.7 × 10−4

Starbursts (radio) 38 25+11
−7 9+6

−4 24.8 3.1 × 10−5

All AGNs (X-rays) 41 27+14
−9 8+5

−4 19.3 4.0 × 10−4

Jetted AGNs ($-rays) 40 23+9
−8 6+4

−3 17.3 1.0 × 10−3

Table 2: The results of the searches for anisotropies against catalogs. The second to fourth columns provide
the threshold energy, the equivalent top-hat radius and the signal fraction maximizing the local TS, or
post-trial #-value, shown in the fifth and sixth columns.

on the analysis results. The catalogs are fully complementary: 2MASS infrared observations of
“all” galaxies provide, through stellar mass, a deep view on integrated star-formation activity; radio
observations of bright starburst galaxies provide a more instantaneous view on ongoing starforming
activity; X-ray observations provide a census of “all” active galaxies, be they jetted or non-jetted;
$-ray observations finally focus on a sub-sample of jetted active galaxies.

To determine whether the flux patterns from these catalogs contribute to the anisotropy in the
toe region, we perform an unbinned maximum-likelihood ratio test [8] between the null hypothesis,
isotropy, and the test hypothesis, that is a catalog contribution added to an isotropic component,
where both hypotheses account for the exposure of the Observatory. The flux of each source is
weighted according to the UHECR attenuation expected from the best-fit model of the spectral and
composition data from [13]. The overall UHECR flux contribution of the catalog is normalized to
a free amplitude " (that of the isotropic component is 1-") and the catalog flux pattern is smoothed
with a Fisher - von Mises function on a Gaussian angular scale, %. The local test statistic, TS,
corresponding to the maximum likelihood ratio is shown as a function of energy threshold in Fig. 2,
right. The TS profiles of the catalogs display an energy dependence similar to that observed in
the Centaurus region, obtained by profiling the pre-trial #-value in Fig. 2, left, and penalizing for
the scan over the angular scale. As reported in Table 2, the signal is maximal for all four catalogs
above an energy threshold close to 40 EeV. For the sake of comparison with other results, the best-fit
Gaussian angular scales are converted to equivalent top-hat radii as Ψ = 1.59× % [17], with best-fit
values at Ψ ≈ 25◦. The signal fractions range from 6 to 15%. The local TS range between 17 and
25, yielding post-trial #-values between 10−3 (3.1&) and 3 × 10−5 (4.0&), accounting for the scan
in energy threshold and the two free parameters (", %).

Although similar parameters are inferred for the four catalogs, the TS and corresponding
post-trial #-values show marked differences. A quantitative comparison between the catalogs is
performed, as in [8], by testing a composite model including contributions from catalog #1 and
catalog #2 against a model including a contribution from catalog #1 only. A $-ray only, X-ray
only, or IR only contribution is disfavored with respect to a composite model including a radio
contribution from starburst galaxies above 38 − 41 EeV at confidence levels varying between 2
and 3&. While there is no significant indication for a preferred catalog, such differences can be
qualitatively understood from a comparison of the observed flux map shown in Fig. 1 with the best-
fit flux models shown in Fig. 3. The X-ray and $-ray models of all and jetted AGNs are dominated
by a contribution from Centaurus A, with additional mild contributions close to the edge of the
FoV from NGC 4151 (so-called “Eye of Sauron”) for the former and from the blazar Markarian 421
and the radio-galaxy NGC 1275 for the latter. The possible mild excess south of the edge of the
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Outlook: Composition-sensitive anisotropy
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Data scan and prescription

Data-driven selection of energy and latitude thresholds

• Scan over the data recorded before 01.01.2013 (54%)

• 5◦ steps in b and 0.1 lg(E/eV) steps in energy

• Highest TS of 8.35 for: → Emin = 1018.7 eV

→ bsplit = 30◦

Set as prescription for remaining data
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On- and off-plane Xmax difference in remaining data

Unscanned data: TS = 12.6

∆〈X ′
max〉 = 10.5 ± 2.5+2.1

−2.2 g/cm
2

∆σ(X ′
max) = 5.9 ± 3.1+3.5

−2.5 g/cm
2

All data: TS = 21.0

∆〈X ′
max〉 = 9.1 ± 1.6+2.1

−2.2 g/cm
2

∆σ(X ′
max) = 5.9 ± 2.1+3.5

−2.5 g/cm
2
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Composition Sky Map

Map compares 〈Xmax〉 of events
within 30◦ of each bin to

the rest of the sky

Red: lower mass than rest of sky
Blue: higher mass than rest of sky

• TS is Welch’s T-Test applied to in-

and out-of-hat X ′
max distributions

(Welch 1938)

• Detector/analysis effects corrected for

by event arrival declination
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Smoothing over 30° bins

(Eric Mayotte)

Not necessarily related to Galaxy 

Local source distribution and 
mass-dependent horizon effect? 

No independent confirmation from other data 

Phase II data and more statistics really  
important to make progress

Mass-dependent

Anisotropy - large scale PoS(ICRC2021)335

Large-scale and multipolar anisotropies at the Pierre Auger Observatory R. M. de Almeida

⇢ (EeV) # 3? 3I 3 U3 [�] X3 [�] P(� AU1 )
4-8 106, 290 0.01+0.006

�0.004 �0.012 ± 0.008 0.016+0.008
�0.005 97 ± 29 �48+23

�22 1.4 ⇥ 10�1

8-16 32, 794 0.055+0.011
�0.009 �0.03 ± 0.01 0.063+0.013

�0.009 95 ± 10 �28+12
�13 3.1 ⇥ 10�7

16-32 9, 156 0.072+0.021
�0.016 �0.07 ± 0.03 0.10+0.03

�0.02 81 ± 15 �43+14
�14 7.5 ⇥ 10�4

�8 44, 398 0.059+0.009
�0.008 �0.042 ± 0.013 0.073+0.011

�0.009 95 ± 8 �36+9
�9 5.1 ⇥ 10�11

�32 2, 448 0.11+0.04
�0.03 �0.12 ± 0.05 0.16+0.05

�0.04 139 ± 19 �47+16
�15 1.0 ⇥ 10�2

Table 1: 3D dipole reconstruction. Shown are the number of events # , dipole components in the equatorial
plane 3? and along the rotation axis of the Earth 3I , the total 3D amplitude 3, dipole direction (U3 , X3) and
the probability to get a larger amplitude of AU1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45� radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45� radius is presented in the right panel of the same figure
in equatorial coordinates. The dipole direction points ⇠ 115� away from the direction of the
Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous
publications [6, 7].

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The
evolution can be described as done in [6] by 3 = 310(⇢/10 EeV)V with 310 = 0.050 ± 0.007 and
V = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the di�erent energy bins
is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per
unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of
the dipole direction as a function of energy considering the present accuracy. The growth of the
dipole amplitude as a function of energy can be a consequence of the larger relative contribution
from nearby sources to the flux at higher energies with respect to the integrated flux from the
more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources
at larges distances is expected to result from the interaction of UHECRs with the background
radiation [19, 20]. Interpretation of the reconstructed dipole directions for the di�erent energy
bins requires taking into account the magnetic deflections of the particles during their trajectory

4

Exposure 110,000 km2 sr yr

(Up to end of 2020,  )θ < 80∘

E > 8 EeV, amplitude 7.3%, 6.6  σ

PoS(ICRC2021)335
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Figure 2: Left panel: Energy dependence of the dipolar amplitude measured above 4 EeV. Right panel:
Reconstructed dipole directions in di�erent energy bins and corresponding 68% C.L. uncertainty, in Galactic
coordinates. The dots indicate the positions of 2MRS galaxies within 100 Mpc.

from the sources up to Earth, being a di�cult task because of our still uncertain knowledge about
cosmic ray composition and Galactic and extragalactic magnetic fields. Nevertheless, by using a
detailed large scale structure matter density field [21] derived from the CosmicFlows-2 catalog of
peculiar velocities [22], an estimation of the magnitude, direction and energy dependence of the
dipolar anisotropy as a function of energy was obtained by performing a combined fit of the dipole
components and cosmic ray composition [23].

Allowing for the presence of a quadrupole, the reconstructed dipolar and quadrupolar com-
ponents of the flux for all energy bins were obtained as in [9] and reported in Table 2. The five
independent quadrupolar components are not significant in any of the energy bins.

3.2 Angular Power Spectrum

The angular distribution �(n) of cosmic rays observed by an experiment in some direction n

can be decomposed by separating the dominant monopole contribution from the anisotropic one,
�(n), as

�(n) = #

4c 51
, (n) [1 + �(n)] , (3)

where , (n) is the relative coverage of the observatory, 51 =
Ø
3n , (n)/4c the fraction of

the sky e�ectively covered by the observatory and # the total number of observed cosmic rays.
Unfortunately, due to the partial sky coverage of the observatory, the estimation of the individual
0✓< coe�cients of the spherical harmonic expansion of �(n), and its angular power spectrum
⇠✓ =

Õ
✓

<=�✓ |0✓< |2/(2✓ + 1), cannot be carried out with relevant resolution as soon as ✓<0G >

2. However, one can make additional assumptions2 about the ensemble-averaged expectation
values of the multipole components [24] and it is possible to recover the angular power spectrum
coe�cients. In this situation, the pseudo-power spectrum ⇠̃✓ =

Õ
✓

<=�✓ |0̃✓< |2/(2✓ + 1) (which
is directly measurable, obtained from 0̃✓< =

Ø
3n , (n)�(n).✓<(n)) is related to the real power

spectrum through

⇠̃✓ =
’
✓
0
"✓✓

0⇠✓
0 . (4)

2For a more detailed discussion about these assumptions see [25].
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! (EeV) " #⊥ #! # $" [◦] %" [◦] P(≥ &#1 )
4-8 106, 290 0.01+0.006

−0.004 −0.012 ± 0.008 0.016+0.008
−0.005 97 ± 29 −48+23

−22 1.4 × 10−1

8-16 32, 794 0.055+0.011
−0.009 −0.03 ± 0.01 0.063+0.013

−0.009 95 ± 10 −28+12
−13 3.1 × 10−7

16-32 9, 156 0.072+0.021
−0.016 −0.07 ± 0.03 0.10+0.03

−0.02 81 ± 15 −43+14
−14 7.5 × 10−4

≥8 44, 398 0.059+0.009
−0.008 −0.042 ± 0.013 0.073+0.011

−0.009 95 ± 8 −36+9
−9 5.1 × 10−11

≥32 2, 448 0.11+0.04
−0.03 −0.12 ± 0.05 0.16+0.05

−0.04 139 ± 19 −47+16
−15 1.0 × 10−2

Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
the probability to get a larger amplitude of &#1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85
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unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the different energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.
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The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87

evolution can be described as done in [6] by # = #10(!/10 EeV)$ with #10 = 0.050 ± 0.007 and88

' = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the different energy bins89

is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per90

unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93
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Dipole reconstruction

5No clear trend in the evolution of dipole direction with energy 

Galactic coordinates

Corresponds to 6.6\

was 1.4 × 10EX (ApJ 2020) and 
2.6 ×10E[ (Science 2017)

3

Figure 1. Left above: The density field of the local universe derived from CosmicFlow-2 (Hoffman et al. 2018) in Super-
galactic coordinates; a 3D interactive view is available at [https://sketchfab.com/3d-models/quasi-linear-construction-of-the-density-field-
91448f58ed5b4a30b5dc270a34fb4352] Left below: The intensity map of the flux illuminating the Galaxy ≥ 8 EeV, for sources following
the CosmicFlow-2 density field using the Eq. 1, “d90”, treatment; the pattern is virtually identical for the sharp-horizon treatment, but with
maximum relative flux =1.47 instead of 1.67 as in “d90”. The direction of the dipole component is not far from the CMB dipole. Right panels:
The colored lines are the percentage contribution to the observed UHECR flux coming from the indicated distance bins, as a function of energy,
for the parameters of the best-fitting d90 (above) and sharp-horizon SH* (below) models detailed in Table 1. The dots represent the average
over the energy bin indicated at the top. The actual calculation uses 1 Mpc bins in distance and 0.1 bins in log10(E).

discussed in Table 1; the meaning should be clear in context.)
Even if the source spectrum were known, Eq. 1 is not an ex-
act description because the energy loss rate evolves during
evolution as the composition and energy change. Moreover
the d90(A, E) values available in the literature are integrated
above a threshold rather than applying to a bin of energy.
A future more accurate treatment needs to take this into ac-
count as well as taking the source spectrum as an unknown
to be self-consistently fit.

We explore the possible spreading of the source images
and reduction in horizon due to diffusion in the EGMF, us-
ing the sharp-horizon treatment. We adopt the simplest hy-
pothesis that the universe is filled with homogeneous and
isotropic turbulent magnetic fields. While the turbulence
level of the EGMF is still unknown, upper limits obtained by
various measurements or arguments exist (Durrer & Neronov
2013). We adopt a Kolmogorov spectrum and – to fully

cover the possible parameter space – we consider rms ran-
dom field strength 0.08 ≤ BEG ≤ 10 nG and coherence
length 0.08 ≤ λEG ≤ 0.5 Mpc. The diffusion coefficient,
DEG, and indeed all magnetic deflections, depends on rigid-
ity, E/Z; in the relevant rigidity domain, DEG is proportional
to
(
E/ZBEGλ0.5

EG

)2
(Globus et al. 2008). The intensity profile

of a single source depends on the diffusion coefficient and on
the distance to the source; it is calculated by a method fol-
lowing the diffusion of light in scattering media, that allows
to take into account the transition between quasi-linear and
diffusive regimes, as detailed in Appendix A.

For a given assumed EGMF, composition and energy, and
adopting either the sharp-horizon or d90 attenuation, we cal-
culate the weight of a 1-Mpc-thick shell of matter at dis-
tance z in the total observed CR flux at the given (A, E). The
final illumination map for that (A, E) and attenuation model
is then the weighted sum of the surface mass density in each

Fundamental observation: 
non-trivial interplay of 
- mass composition, 
- magnetic horizon and 
- local source distribution

(Ding, Globus & Farrar 2101.04564) (Harari, Mollerach, Roulet PRD92 (2015) 06314)

6.6 σ

p ∼ 5×10−11
Exposure until end of 2020 (θ < 80°): 110,000 km2 sr yr

12 The Pierre Auger Collaboration
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Figure 6. Comparison of the dipole amplitude as a function of energy with predictions from models (Harari et al. 2015) with
mixed composition and a source density ρ = 10−4 Mpc−3. Cosmic rays are propagated in an isotropic turbulent extragalactic
magnetic field with rms amplitude of 1 nG and a Kolmogorov spectrum with coherence length equal to 1 Mpc (with the results
having only mild dependence on the magnetic-field strength adopted). The gray line indicates the mean value for simulations
with uniformly distributed sources, while the blue one shows the mean value for realizations with sources distributed as the
galaxies in the 2MRS catalog. The bands represent the dispersion for different realizations of the source distribution. The steps
observed reflect the rigidity cutoff of the different mass components.

Regarding the possible origin of the dipolar CR anisotropy, we note that the relative motion of the observer with
respect to the rest frame of cosmic rays is expected to give rise to a dipolar modulation of the flux, known as the
Compton–Getting effect (Compton & Getting 1935). For particles with a power-law energy spectrum dΦ/dE ∝ E−γ ,
the resulting dipolar amplitude is dCG = (v/c)(γ + 2), with v/c the velocity of the observer normalized to the speed
of light. In particular, if the rest frame of the cosmic rays were the same as that of the cosmic microwave background,
the dipole amplitude would be dCG " 0.006 (Kachelriess & Serpico 2006), an order of magnitude smaller than the
observed dipole above 8 EeV. Thus, the Compton–Getting effect is predicted to give only a sub-dominant contribution
to the dipole measured for energies above 8 EeV.
Plausible explanations for the observed dipolar-like distribution include the diffusive propagation from the closest

extragalactic source(s) or that it be due to the inhomogeneous distribution of the sources in our cosmic neighborhood
(Giler et al. 1980; Berezinsky et al. 1990; Harari et al. 2014, 2015). The expected amplitude of the resulting dipole
depends in these cases mostly on the number density of the source distribution, ρ, with only a mild dependence on the
amplitude of the extragalactic magnetic field. For homogeneous source distributions with ρ ∼ (10−5 − 10−3) Mpc−3,
spanning the range between densities of galaxy clusters, jetted radio-galaxies, Seyfert galaxies and starburst galaxies,
the dipole amplitude turns out to be at the level of few percent at E ∼ 10 EeV, both for scenarios with light (Harari
et al. 2014) and with mixed CR compositions (Harari et al. 2015). A density of sources smaller by a factor of ten leads
on average to a dipolar amplitude larger by approximately a factor of two. An enhanced anisotropy could result if the
sources were to follow the inhomogeneous distribution of the local galaxies, with a dipole amplitude larger by a factor
of about two with respect to the case of a uniform distribution of the same source density. The expected behavior is
exemplified in Figure 6 where we have included the observed dipole amplitude values together with the predictions
from Harari et al. (2015) for a scenario with five representative mass components (H, He, C, Si and Fe) having an E−2

spectrum with a sharp rigidity cutoff at 6 EV and adopting a source density ρ = 10−4 Mpc−3 (ignoring the effects of
the Galactic magnetic field). The data show indications of a growth in the amplitude with increasing energy that is
similar to the one obtained in the models. Note that this kind of scenario is also in line with the composition favored
by Pierre Auger Observatory data (The Pierre Auger Collaboration 2017c).
Regarding the direction of the dipolar modulation, it is important to take into account the effect of the Galactic

magnetic field on the trajectories of extragalactic cosmic rays reaching the Earth.4 The facts that the Galactic magnetic

4 These deflections can not only lead to a significant change in the dipole direction and in its amplitude, but they also generate some
higher order harmonics even if pure dipolar modulation is only present outside the Galaxy (Harari et al. 2010).

p He
CNO

Si
Fe

ApJ 868 (2018) 1

(Rogerio Menezes)

Differential bins

Dipole directions, with 68% CL uncertainties

Anisotropy on large angular scales – dipole
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! (EeV) " #⊥ #! # $" [◦] %" [◦] P(≥ &#1 )
4-8 106, 290 0.01+0.006

−0.004 −0.012 ± 0.008 0.016+0.008
−0.005 97 ± 29 −48+23

−22 1.4 × 10−1

8-16 32, 794 0.055+0.011
−0.009 −0.03 ± 0.01 0.063+0.013

−0.009 95 ± 10 −28+12
−13 3.1 × 10−7

16-32 9, 156 0.072+0.021
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Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85
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The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87

evolution can be described as done in [6] by # = #10(!/10 EeV)$ with #10 = 0.050 ± 0.007 and88
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unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the different energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.
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Figure 1. Left above: The density field of the local universe derived from CosmicFlow-2 (Hoffman et al. 2018) in Super-
galactic coordinates; a 3D interactive view is available at [https://sketchfab.com/3d-models/quasi-linear-construction-of-the-density-field-
91448f58ed5b4a30b5dc270a34fb4352] Left below: The intensity map of the flux illuminating the Galaxy ≥ 8 EeV, for sources following
the CosmicFlow-2 density field using the Eq. 1, “d90”, treatment; the pattern is virtually identical for the sharp-horizon treatment, but with
maximum relative flux =1.47 instead of 1.67 as in “d90”. The direction of the dipole component is not far from the CMB dipole. Right panels:
The colored lines are the percentage contribution to the observed UHECR flux coming from the indicated distance bins, as a function of energy,
for the parameters of the best-fitting d90 (above) and sharp-horizon SH* (below) models detailed in Table 1. The dots represent the average
over the energy bin indicated at the top. The actual calculation uses 1 Mpc bins in distance and 0.1 bins in log10(E).

discussed in Table 1; the meaning should be clear in context.)
Even if the source spectrum were known, Eq. 1 is not an ex-
act description because the energy loss rate evolves during
evolution as the composition and energy change. Moreover
the d90(A, E) values available in the literature are integrated
above a threshold rather than applying to a bin of energy.
A future more accurate treatment needs to take this into ac-
count as well as taking the source spectrum as an unknown
to be self-consistently fit.

We explore the possible spreading of the source images
and reduction in horizon due to diffusion in the EGMF, us-
ing the sharp-horizon treatment. We adopt the simplest hy-
pothesis that the universe is filled with homogeneous and
isotropic turbulent magnetic fields. While the turbulence
level of the EGMF is still unknown, upper limits obtained by
various measurements or arguments exist (Durrer & Neronov
2013). We adopt a Kolmogorov spectrum and – to fully

cover the possible parameter space – we consider rms ran-
dom field strength 0.08 ≤ BEG ≤ 10 nG and coherence
length 0.08 ≤ λEG ≤ 0.5 Mpc. The diffusion coefficient,
DEG, and indeed all magnetic deflections, depends on rigid-
ity, E/Z; in the relevant rigidity domain, DEG is proportional
to
(
E/ZBEGλ0.5

EG

)2
(Globus et al. 2008). The intensity profile

of a single source depends on the diffusion coefficient and on
the distance to the source; it is calculated by a method fol-
lowing the diffusion of light in scattering media, that allows
to take into account the transition between quasi-linear and
diffusive regimes, as detailed in Appendix A.

For a given assumed EGMF, composition and energy, and
adopting either the sharp-horizon or d90 attenuation, we cal-
culate the weight of a 1-Mpc-thick shell of matter at dis-
tance z in the total observed CR flux at the given (A, E). The
final illumination map for that (A, E) and attenuation model
is then the weighted sum of the surface mass density in each

Fundamental observation: 
non-trivial interplay of 
- mass composition, 
- magnetic horizon and 
- local source distribution

(Ding, Globus & Farrar 2101.04564) (Harari, Mollerach, Roulet PRD92 (2015) 06314)
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Figure 6. Comparison of the dipole amplitude as a function of energy with predictions from models (Harari et al. 2015) with
mixed composition and a source density ρ = 10−4 Mpc−3. Cosmic rays are propagated in an isotropic turbulent extragalactic
magnetic field with rms amplitude of 1 nG and a Kolmogorov spectrum with coherence length equal to 1 Mpc (with the results
having only mild dependence on the magnetic-field strength adopted). The gray line indicates the mean value for simulations
with uniformly distributed sources, while the blue one shows the mean value for realizations with sources distributed as the
galaxies in the 2MRS catalog. The bands represent the dispersion for different realizations of the source distribution. The steps
observed reflect the rigidity cutoff of the different mass components.

Regarding the possible origin of the dipolar CR anisotropy, we note that the relative motion of the observer with
respect to the rest frame of cosmic rays is expected to give rise to a dipolar modulation of the flux, known as the
Compton–Getting effect (Compton & Getting 1935). For particles with a power-law energy spectrum dΦ/dE ∝ E−γ ,
the resulting dipolar amplitude is dCG = (v/c)(γ + 2), with v/c the velocity of the observer normalized to the speed
of light. In particular, if the rest frame of the cosmic rays were the same as that of the cosmic microwave background,
the dipole amplitude would be dCG " 0.006 (Kachelriess & Serpico 2006), an order of magnitude smaller than the
observed dipole above 8 EeV. Thus, the Compton–Getting effect is predicted to give only a sub-dominant contribution
to the dipole measured for energies above 8 EeV.
Plausible explanations for the observed dipolar-like distribution include the diffusive propagation from the closest

extragalactic source(s) or that it be due to the inhomogeneous distribution of the sources in our cosmic neighborhood
(Giler et al. 1980; Berezinsky et al. 1990; Harari et al. 2014, 2015). The expected amplitude of the resulting dipole
depends in these cases mostly on the number density of the source distribution, ρ, with only a mild dependence on the
amplitude of the extragalactic magnetic field. For homogeneous source distributions with ρ ∼ (10−5 − 10−3) Mpc−3,
spanning the range between densities of galaxy clusters, jetted radio-galaxies, Seyfert galaxies and starburst galaxies,
the dipole amplitude turns out to be at the level of few percent at E ∼ 10 EeV, both for scenarios with light (Harari
et al. 2014) and with mixed CR compositions (Harari et al. 2015). A density of sources smaller by a factor of ten leads
on average to a dipolar amplitude larger by approximately a factor of two. An enhanced anisotropy could result if the
sources were to follow the inhomogeneous distribution of the local galaxies, with a dipole amplitude larger by a factor
of about two with respect to the case of a uniform distribution of the same source density. The expected behavior is
exemplified in Figure 6 where we have included the observed dipole amplitude values together with the predictions
from Harari et al. (2015) for a scenario with five representative mass components (H, He, C, Si and Fe) having an E−2

spectrum with a sharp rigidity cutoff at 6 EV and adopting a source density ρ = 10−4 Mpc−3 (ignoring the effects of
the Galactic magnetic field). The data show indications of a growth in the amplitude with increasing energy that is
similar to the one obtained in the models. Note that this kind of scenario is also in line with the composition favored
by Pierre Auger Observatory data (The Pierre Auger Collaboration 2017c).
Regarding the direction of the dipolar modulation, it is important to take into account the effect of the Galactic

magnetic field on the trajectories of extragalactic cosmic rays reaching the Earth.4 The facts that the Galactic magnetic

4 These deflections can not only lead to a significant change in the dipole direction and in its amplitude, but they also generate some
higher order harmonics even if pure dipolar modulation is only present outside the Galaxy (Harari et al. 2010).
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⇢ (EeV) # 3? 3I 3 U3 [�] X3 [�] P(� AU1 )
4-8 106, 290 0.01+0.006

�0.004 �0.012 ± 0.008 0.016+0.008
�0.005 97 ± 29 �48+23

�22 1.4 ⇥ 10�1

8-16 32, 794 0.055+0.011
�0.009 �0.03 ± 0.01 0.063+0.013

�0.009 95 ± 10 �28+12
�13 3.1 ⇥ 10�7

16-32 9, 156 0.072+0.021
�0.016 �0.07 ± 0.03 0.10+0.03

�0.02 81 ± 15 �43+14
�14 7.5 ⇥ 10�4

�8 44, 398 0.059+0.009
�0.008 �0.042 ± 0.013 0.073+0.011

�0.009 95 ± 8 �36+9
�9 5.1 ⇥ 10�11

�32 2, 448 0.11+0.04
�0.03 �0.12 ± 0.05 0.16+0.05

�0.04 139 ± 19 �47+16
�15 1.0 ⇥ 10�2

Table 1: 3D dipole reconstruction. Shown are the number of events # , dipole components in the equatorial
plane 3? and along the rotation axis of the Earth 3I , the total 3D amplitude 3, dipole direction (U3 , X3) and
the probability to get a larger amplitude of AU1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45� radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45� radius is presented in the right panel of the same figure
in equatorial coordinates. The dipole direction points ⇠ 115� away from the direction of the
Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous
publications [6, 7].

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The
evolution can be described as done in [6] by 3 = 310(⇢/10 EeV)V with 310 = 0.050 ± 0.007 and
V = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the di�erent energy bins
is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per
unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of
the dipole direction as a function of energy considering the present accuracy. The growth of the
dipole amplitude as a function of energy can be a consequence of the larger relative contribution
from nearby sources to the flux at higher energies with respect to the integrated flux from the
more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources
at larges distances is expected to result from the interaction of UHECRs with the background
radiation [19, 20]. Interpretation of the reconstructed dipole directions for the di�erent energy
bins requires taking into account the magnetic deflections of the particles during their trajectory
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Figure 2: Left panel: Energy dependence of the dipolar amplitude measured above 4 EeV. Right panel:
Reconstructed dipole directions in di�erent energy bins and corresponding 68% C.L. uncertainty, in Galactic
coordinates. The dots indicate the positions of 2MRS galaxies within 100 Mpc.

from the sources up to Earth, being a di�cult task because of our still uncertain knowledge about
cosmic ray composition and Galactic and extragalactic magnetic fields. Nevertheless, by using a
detailed large scale structure matter density field [21] derived from the CosmicFlows-2 catalog of
peculiar velocities [22], an estimation of the magnitude, direction and energy dependence of the
dipolar anisotropy as a function of energy was obtained by performing a combined fit of the dipole
components and cosmic ray composition [23].

Allowing for the presence of a quadrupole, the reconstructed dipolar and quadrupolar com-
ponents of the flux for all energy bins were obtained as in [9] and reported in Table 2. The five
independent quadrupolar components are not significant in any of the energy bins.

3.2 Angular Power Spectrum

The angular distribution �(n) of cosmic rays observed by an experiment in some direction n

can be decomposed by separating the dominant monopole contribution from the anisotropic one,
�(n), as

�(n) = #

4c 51
, (n) [1 + �(n)] , (3)

where , (n) is the relative coverage of the observatory, 51 =
Ø
3n , (n)/4c the fraction of

the sky e�ectively covered by the observatory and # the total number of observed cosmic rays.
Unfortunately, due to the partial sky coverage of the observatory, the estimation of the individual
0✓< coe�cients of the spherical harmonic expansion of �(n), and its angular power spectrum
⇠✓ =

Õ
✓

<=�✓ |0✓< |2/(2✓ + 1), cannot be carried out with relevant resolution as soon as ✓<0G >

2. However, one can make additional assumptions2 about the ensemble-averaged expectation
values of the multipole components [24] and it is possible to recover the angular power spectrum
coe�cients. In this situation, the pseudo-power spectrum ⇠̃✓ =

Õ
✓

<=�✓ |0̃✓< |2/(2✓ + 1) (which
is directly measurable, obtained from 0̃✓< =

Ø
3n , (n)�(n).✓<(n)) is related to the real power

spectrum through

⇠̃✓ =
’
✓
0
"✓✓

0⇠✓
0 . (4)

2For a more detailed discussion about these assumptions see [25].
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! (EeV) " #⊥ #! # $" [◦] %" [◦] P(≥ &#1 )
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−13 3.1 × 10−7
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−0.02 81 ± 15 −43+14
−14 7.5 × 10−4
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−9 5.1 × 10−11
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Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
the probability to get a larger amplitude of &#1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85

publications [6, 7].86

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87

evolution can be described as done in [6] by # = #10(!/10 EeV)$ with #10 = 0.050 ± 0.007 and88

' = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the different energy bins89

is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per90

unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the different energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98
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Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
the probability to get a larger amplitude of &#1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.
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Figure 1. Left above: The density field of the local universe derived from CosmicFlow-2 (Hoffman et al. 2018) in Super-
galactic coordinates; a 3D interactive view is available at [https://sketchfab.com/3d-models/quasi-linear-construction-of-the-density-field-
91448f58ed5b4a30b5dc270a34fb4352] Left below: The intensity map of the flux illuminating the Galaxy ≥ 8 EeV, for sources following
the CosmicFlow-2 density field using the Eq. 1, “d90”, treatment; the pattern is virtually identical for the sharp-horizon treatment, but with
maximum relative flux =1.47 instead of 1.67 as in “d90”. The direction of the dipole component is not far from the CMB dipole. Right panels:
The colored lines are the percentage contribution to the observed UHECR flux coming from the indicated distance bins, as a function of energy,
for the parameters of the best-fitting d90 (above) and sharp-horizon SH* (below) models detailed in Table 1. The dots represent the average
over the energy bin indicated at the top. The actual calculation uses 1 Mpc bins in distance and 0.1 bins in log10(E).

discussed in Table 1; the meaning should be clear in context.)
Even if the source spectrum were known, Eq. 1 is not an ex-
act description because the energy loss rate evolves during
evolution as the composition and energy change. Moreover
the d90(A, E) values available in the literature are integrated
above a threshold rather than applying to a bin of energy.
A future more accurate treatment needs to take this into ac-
count as well as taking the source spectrum as an unknown
to be self-consistently fit.

We explore the possible spreading of the source images
and reduction in horizon due to diffusion in the EGMF, us-
ing the sharp-horizon treatment. We adopt the simplest hy-
pothesis that the universe is filled with homogeneous and
isotropic turbulent magnetic fields. While the turbulence
level of the EGMF is still unknown, upper limits obtained by
various measurements or arguments exist (Durrer & Neronov
2013). We adopt a Kolmogorov spectrum and – to fully

cover the possible parameter space – we consider rms ran-
dom field strength 0.08 ≤ BEG ≤ 10 nG and coherence
length 0.08 ≤ λEG ≤ 0.5 Mpc. The diffusion coefficient,
DEG, and indeed all magnetic deflections, depends on rigid-
ity, E/Z; in the relevant rigidity domain, DEG is proportional
to
(
E/ZBEGλ0.5

EG

)2
(Globus et al. 2008). The intensity profile

of a single source depends on the diffusion coefficient and on
the distance to the source; it is calculated by a method fol-
lowing the diffusion of light in scattering media, that allows
to take into account the transition between quasi-linear and
diffusive regimes, as detailed in Appendix A.

For a given assumed EGMF, composition and energy, and
adopting either the sharp-horizon or d90 attenuation, we cal-
culate the weight of a 1-Mpc-thick shell of matter at dis-
tance z in the total observed CR flux at the given (A, E). The
final illumination map for that (A, E) and attenuation model
is then the weighted sum of the surface mass density in each
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Figure 6. Comparison of the dipole amplitude as a function of energy with predictions from models (Harari et al. 2015) with
mixed composition and a source density ρ = 10−4 Mpc−3. Cosmic rays are propagated in an isotropic turbulent extragalactic
magnetic field with rms amplitude of 1 nG and a Kolmogorov spectrum with coherence length equal to 1 Mpc (with the results
having only mild dependence on the magnetic-field strength adopted). The gray line indicates the mean value for simulations
with uniformly distributed sources, while the blue one shows the mean value for realizations with sources distributed as the
galaxies in the 2MRS catalog. The bands represent the dispersion for different realizations of the source distribution. The steps
observed reflect the rigidity cutoff of the different mass components.

Regarding the possible origin of the dipolar CR anisotropy, we note that the relative motion of the observer with
respect to the rest frame of cosmic rays is expected to give rise to a dipolar modulation of the flux, known as the
Compton–Getting effect (Compton & Getting 1935). For particles with a power-law energy spectrum dΦ/dE ∝ E−γ ,
the resulting dipolar amplitude is dCG = (v/c)(γ + 2), with v/c the velocity of the observer normalized to the speed
of light. In particular, if the rest frame of the cosmic rays were the same as that of the cosmic microwave background,
the dipole amplitude would be dCG " 0.006 (Kachelriess & Serpico 2006), an order of magnitude smaller than the
observed dipole above 8 EeV. Thus, the Compton–Getting effect is predicted to give only a sub-dominant contribution
to the dipole measured for energies above 8 EeV.
Plausible explanations for the observed dipolar-like distribution include the diffusive propagation from the closest

extragalactic source(s) or that it be due to the inhomogeneous distribution of the sources in our cosmic neighborhood
(Giler et al. 1980; Berezinsky et al. 1990; Harari et al. 2014, 2015). The expected amplitude of the resulting dipole
depends in these cases mostly on the number density of the source distribution, ρ, with only a mild dependence on the
amplitude of the extragalactic magnetic field. For homogeneous source distributions with ρ ∼ (10−5 − 10−3) Mpc−3,
spanning the range between densities of galaxy clusters, jetted radio-galaxies, Seyfert galaxies and starburst galaxies,
the dipole amplitude turns out to be at the level of few percent at E ∼ 10 EeV, both for scenarios with light (Harari
et al. 2014) and with mixed CR compositions (Harari et al. 2015). A density of sources smaller by a factor of ten leads
on average to a dipolar amplitude larger by approximately a factor of two. An enhanced anisotropy could result if the
sources were to follow the inhomogeneous distribution of the local galaxies, with a dipole amplitude larger by a factor
of about two with respect to the case of a uniform distribution of the same source density. The expected behavior is
exemplified in Figure 6 where we have included the observed dipole amplitude values together with the predictions
from Harari et al. (2015) for a scenario with five representative mass components (H, He, C, Si and Fe) having an E−2

spectrum with a sharp rigidity cutoff at 6 EV and adopting a source density ρ = 10−4 Mpc−3 (ignoring the effects of
the Galactic magnetic field). The data show indications of a growth in the amplitude with increasing energy that is
similar to the one obtained in the models. Note that this kind of scenario is also in line with the composition favored
by Pierre Auger Observatory data (The Pierre Auger Collaboration 2017c).
Regarding the direction of the dipolar modulation, it is important to take into account the effect of the Galactic

magnetic field on the trajectories of extragalactic cosmic rays reaching the Earth.4 The facts that the Galactic magnetic

4 These deflections can not only lead to a significant change in the dipole direction and in its amplitude, but they also generate some
higher order harmonics even if pure dipolar modulation is only present outside the Galaxy (Harari et al. 2010).
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! (EeV) " #⊥ #! # $" [◦] %" [◦] P(≥ &#1 )
4-8 106, 290 0.01+0.006

−0.004 −0.012 ± 0.008 0.016+0.008
−0.005 97 ± 29 −48+23

−22 1.4 × 10−1

8-16 32, 794 0.055+0.011
−0.009 −0.03 ± 0.01 0.063+0.013

−0.009 95 ± 10 −28+12
−13 3.1 × 10−7

16-32 9, 156 0.072+0.021
−0.016 −0.07 ± 0.03 0.10+0.03

−0.02 81 ± 15 −43+14
−14 7.5 × 10−4

≥8 44, 398 0.059+0.009
−0.008 −0.042 ± 0.013 0.073+0.011

−0.009 95 ± 8 −36+9
−9 5.1 × 10−11

≥32 2, 448 0.11+0.04
−0.03 −0.12 ± 0.05 0.16+0.05

−0.04 139 ± 19 −47+16
−15 1.0 × 10−2

Table 1: 3D dipole reconstruction. Shown are the number of events " , dipole components in the equatorial
plane #⊥ and along the rotation axis of the Earth #! , the total 3D amplitude #, dipole direction ($" , %") and
the probability to get a larger amplitude of &#1 from fluctuations of an isotropic distribution.
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Figure 1: Left panel:. Distribution of the normalized rate of events with energy above 8 EeV as a function
of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
black solid line. Right panel: Map of the flux of cosmic rays above 8 EeV in equatorial coordinates averaged
on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.

bin, averaged on top-hat windows of 45◦ radius is presented in the right panel of the same figure83

in equatorial coordinates. The dipole direction points ∼ 115◦ away from the direction of the84

Galactic centre indicating an extragalactic origin for these cosmic rays, in agreement with previous85

publications [6, 7].86

The dipole amplitudes as a function of energy are presented in the left panel of Fig. 2. The87

evolution can be described as done in [6] by # = #10(!/10 EeV)$ with #10 = 0.050 ± 0.007 and88

' = 0.98 ± 0.15. The reconstructed direction of the dipolar anisotropy for the different energy bins89

is shown in the right panel of Fig.2 with corresponding 68% C.L. contours of equal probability per90

unit solid angle, marginalized over the dipole amplitude. There is no clear trend in the change of91

the dipole direction as a function of energy considering the present accuracy. The growth of the92

dipole amplitude as a function of energy can be a consequence of the larger relative contribution93

from nearby sources to the flux at higher energies with respect to the integrated flux from the94

more distant and isotropically distributed sources [10–18]. This suppression in the flux of sources95

at larges distances is expected to result from the interaction of UHECRs with the background96

radiation [19, 20]. Interpretation of the reconstructed dipole directions for the different energy97

bins requires taking into account the magnetic deflections of the particles during their trajectory98
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of the right ascension. The first-harmonic modulation obtained through the Rayleigh analysis is shown by a
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on top-hat windows of 45◦ radius. The location of the Galactic plane is shown with a dashed line and the
Galactic center is indicated with a star.
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Figure 1. Left above: The density field of the local universe derived from CosmicFlow-2 (Hoffman et al. 2018) in Super-
galactic coordinates; a 3D interactive view is available at [https://sketchfab.com/3d-models/quasi-linear-construction-of-the-density-field-
91448f58ed5b4a30b5dc270a34fb4352] Left below: The intensity map of the flux illuminating the Galaxy ≥ 8 EeV, for sources following
the CosmicFlow-2 density field using the Eq. 1, “d90”, treatment; the pattern is virtually identical for the sharp-horizon treatment, but with
maximum relative flux =1.47 instead of 1.67 as in “d90”. The direction of the dipole component is not far from the CMB dipole. Right panels:
The colored lines are the percentage contribution to the observed UHECR flux coming from the indicated distance bins, as a function of energy,
for the parameters of the best-fitting d90 (above) and sharp-horizon SH* (below) models detailed in Table 1. The dots represent the average
over the energy bin indicated at the top. The actual calculation uses 1 Mpc bins in distance and 0.1 bins in log10(E).

discussed in Table 1; the meaning should be clear in context.)
Even if the source spectrum were known, Eq. 1 is not an ex-
act description because the energy loss rate evolves during
evolution as the composition and energy change. Moreover
the d90(A, E) values available in the literature are integrated
above a threshold rather than applying to a bin of energy.
A future more accurate treatment needs to take this into ac-
count as well as taking the source spectrum as an unknown
to be self-consistently fit.

We explore the possible spreading of the source images
and reduction in horizon due to diffusion in the EGMF, us-
ing the sharp-horizon treatment. We adopt the simplest hy-
pothesis that the universe is filled with homogeneous and
isotropic turbulent magnetic fields. While the turbulence
level of the EGMF is still unknown, upper limits obtained by
various measurements or arguments exist (Durrer & Neronov
2013). We adopt a Kolmogorov spectrum and – to fully

cover the possible parameter space – we consider rms ran-
dom field strength 0.08 ≤ BEG ≤ 10 nG and coherence
length 0.08 ≤ λEG ≤ 0.5 Mpc. The diffusion coefficient,
DEG, and indeed all magnetic deflections, depends on rigid-
ity, E/Z; in the relevant rigidity domain, DEG is proportional
to
(
E/ZBEGλ0.5

EG

)2
(Globus et al. 2008). The intensity profile

of a single source depends on the diffusion coefficient and on
the distance to the source; it is calculated by a method fol-
lowing the diffusion of light in scattering media, that allows
to take into account the transition between quasi-linear and
diffusive regimes, as detailed in Appendix A.

For a given assumed EGMF, composition and energy, and
adopting either the sharp-horizon or d90 attenuation, we cal-
culate the weight of a 1-Mpc-thick shell of matter at dis-
tance z in the total observed CR flux at the given (A, E). The
final illumination map for that (A, E) and attenuation model
is then the weighted sum of the surface mass density in each
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Figure 6. Comparison of the dipole amplitude as a function of energy with predictions from models (Harari et al. 2015) with
mixed composition and a source density ρ = 10−4 Mpc−3. Cosmic rays are propagated in an isotropic turbulent extragalactic
magnetic field with rms amplitude of 1 nG and a Kolmogorov spectrum with coherence length equal to 1 Mpc (with the results
having only mild dependence on the magnetic-field strength adopted). The gray line indicates the mean value for simulations
with uniformly distributed sources, while the blue one shows the mean value for realizations with sources distributed as the
galaxies in the 2MRS catalog. The bands represent the dispersion for different realizations of the source distribution. The steps
observed reflect the rigidity cutoff of the different mass components.

Regarding the possible origin of the dipolar CR anisotropy, we note that the relative motion of the observer with
respect to the rest frame of cosmic rays is expected to give rise to a dipolar modulation of the flux, known as the
Compton–Getting effect (Compton & Getting 1935). For particles with a power-law energy spectrum dΦ/dE ∝ E−γ ,
the resulting dipolar amplitude is dCG = (v/c)(γ + 2), with v/c the velocity of the observer normalized to the speed
of light. In particular, if the rest frame of the cosmic rays were the same as that of the cosmic microwave background,
the dipole amplitude would be dCG " 0.006 (Kachelriess & Serpico 2006), an order of magnitude smaller than the
observed dipole above 8 EeV. Thus, the Compton–Getting effect is predicted to give only a sub-dominant contribution
to the dipole measured for energies above 8 EeV.
Plausible explanations for the observed dipolar-like distribution include the diffusive propagation from the closest

extragalactic source(s) or that it be due to the inhomogeneous distribution of the sources in our cosmic neighborhood
(Giler et al. 1980; Berezinsky et al. 1990; Harari et al. 2014, 2015). The expected amplitude of the resulting dipole
depends in these cases mostly on the number density of the source distribution, ρ, with only a mild dependence on the
amplitude of the extragalactic magnetic field. For homogeneous source distributions with ρ ∼ (10−5 − 10−3) Mpc−3,
spanning the range between densities of galaxy clusters, jetted radio-galaxies, Seyfert galaxies and starburst galaxies,
the dipole amplitude turns out to be at the level of few percent at E ∼ 10 EeV, both for scenarios with light (Harari
et al. 2014) and with mixed CR compositions (Harari et al. 2015). A density of sources smaller by a factor of ten leads
on average to a dipolar amplitude larger by approximately a factor of two. An enhanced anisotropy could result if the
sources were to follow the inhomogeneous distribution of the local galaxies, with a dipole amplitude larger by a factor
of about two with respect to the case of a uniform distribution of the same source density. The expected behavior is
exemplified in Figure 6 where we have included the observed dipole amplitude values together with the predictions
from Harari et al. (2015) for a scenario with five representative mass components (H, He, C, Si and Fe) having an E−2

spectrum with a sharp rigidity cutoff at 6 EV and adopting a source density ρ = 10−4 Mpc−3 (ignoring the effects of
the Galactic magnetic field). The data show indications of a growth in the amplitude with increasing energy that is
similar to the one obtained in the models. Note that this kind of scenario is also in line with the composition favored
by Pierre Auger Observatory data (The Pierre Auger Collaboration 2017c).
Regarding the direction of the dipolar modulation, it is important to take into account the effect of the Galactic

magnetic field on the trajectories of extragalactic cosmic rays reaching the Earth.4 The facts that the Galactic magnetic

4 These deflections can not only lead to a significant change in the dipole direction and in its amplitude, but they also generate some
higher order harmonics even if pure dipolar modulation is only present outside the Galaxy (Harari et al. 2010).
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UHECR sky > 32 EeV viewed from the Pierre Auger Observatory Jonathan Biteau

Catalog !th [EeV] Ψ [deg] " [%] TS Post-trial #-value
All galaxies (IR) 40 24+16

−8 15+10
−6 18.2 6.7 × 10−4

Starbursts (radio) 38 25+11
−7 9+6

−4 24.8 3.1 × 10−5

All AGNs (X-rays) 41 27+14
−9 8+5

−4 19.3 4.0 × 10−4

Jetted AGNs ($-rays) 40 23+9
−8 6+4

−3 17.3 1.0 × 10−3

Table 2: The results of the searches for anisotropies against catalogs. The second to fourth columns provide
the threshold energy, the equivalent top-hat radius and the signal fraction maximizing the local TS, or
post-trial #-value, shown in the fifth and sixth columns.

on the analysis results. The catalogs are fully complementary: 2MASS infrared observations of
“all” galaxies provide, through stellar mass, a deep view on integrated star-formation activity; radio
observations of bright starburst galaxies provide a more instantaneous view on ongoing starforming
activity; X-ray observations provide a census of “all” active galaxies, be they jetted or non-jetted;
$-ray observations finally focus on a sub-sample of jetted active galaxies.

To determine whether the flux patterns from these catalogs contribute to the anisotropy in the
toe region, we perform an unbinned maximum-likelihood ratio test [8] between the null hypothesis,
isotropy, and the test hypothesis, that is a catalog contribution added to an isotropic component,
where both hypotheses account for the exposure of the Observatory. The flux of each source is
weighted according to the UHECR attenuation expected from the best-fit model of the spectral and
composition data from [13]. The overall UHECR flux contribution of the catalog is normalized to
a free amplitude " (that of the isotropic component is 1-") and the catalog flux pattern is smoothed
with a Fisher - von Mises function on a Gaussian angular scale, %. The local test statistic, TS,
corresponding to the maximum likelihood ratio is shown as a function of energy threshold in Fig. 2,
right. The TS profiles of the catalogs display an energy dependence similar to that observed in
the Centaurus region, obtained by profiling the pre-trial #-value in Fig. 2, left, and penalizing for
the scan over the angular scale. As reported in Table 2, the signal is maximal for all four catalogs
above an energy threshold close to 40 EeV. For the sake of comparison with other results, the best-fit
Gaussian angular scales are converted to equivalent top-hat radii as Ψ = 1.59× % [17], with best-fit
values at Ψ ≈ 25◦. The signal fractions range from 6 to 15%. The local TS range between 17 and
25, yielding post-trial #-values between 10−3 (3.1&) and 3 × 10−5 (4.0&), accounting for the scan
in energy threshold and the two free parameters (", %).

Although similar parameters are inferred for the four catalogs, the TS and corresponding
post-trial #-values show marked differences. A quantitative comparison between the catalogs is
performed, as in [8], by testing a composite model including contributions from catalog #1 and
catalog #2 against a model including a contribution from catalog #1 only. A $-ray only, X-ray
only, or IR only contribution is disfavored with respect to a composite model including a radio
contribution from starburst galaxies above 38 − 41 EeV at confidence levels varying between 2
and 3&. While there is no significant indication for a preferred catalog, such differences can be
qualitatively understood from a comparison of the observed flux map shown in Fig. 1 with the best-
fit flux models shown in Fig. 3. The X-ray and $-ray models of all and jetted AGNs are dominated
by a contribution from Centaurus A, with additional mild contributions close to the edge of the
FoV from NGC 4151 (so-called “Eye of Sauron”) for the former and from the blazar Markarian 421
and the radio-galaxy NGC 1275 for the latter. The possible mild excess south of the edge of the
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UHECR sky > 32 EeV viewed from the Pierre Auger Observatory Jonathan Biteau

Catalog !th [EeV] Ψ [deg] " [%] TS Post-trial #-value
All galaxies (IR) 40 24+16

−8 15+10
−6 18.2 6.7 × 10−4

Starbursts (radio) 38 25+11
−7 9+6

−4 24.8 3.1 × 10−5

All AGNs (X-rays) 41 27+14
−9 8+5

−4 19.3 4.0 × 10−4

Jetted AGNs ($-rays) 40 23+9
−8 6+4

−3 17.3 1.0 × 10−3

Table 2: The results of the searches for anisotropies against catalogs. The second to fourth columns provide
the threshold energy, the equivalent top-hat radius and the signal fraction maximizing the local TS, or
post-trial #-value, shown in the fifth and sixth columns.

on the analysis results. The catalogs are fully complementary: 2MASS infrared observations of
“all” galaxies provide, through stellar mass, a deep view on integrated star-formation activity; radio
observations of bright starburst galaxies provide a more instantaneous view on ongoing starforming
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25, yielding post-trial #-values between 10−3 (3.1&) and 3 × 10−5 (4.0&), accounting for the scan
in energy threshold and the two free parameters (", %).
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Figure 5: Multi-hybrid event with measurements by WCDs, SSDs, radio antennas, and un-
derground muon counters. Information from the WCDs is used to calculate the central event
trigger and to reconstruct the event geometry. Any of the three subordinate detectors (SSDs,
radio antennas, and underground muon counters) making use of this reconstructed shower
geometry as is (i.e. without a re-determination thereof) must take into account the uncertainty
therein. The steeper the LDF, the more relevant taking the core uncertainty into account is.
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Components: 
- 3.8 m2 scintillator

- Electronics upgrade

- Small PMT (increased dynamic range)

- Radio antennas for inclined air showers

- Buried scintillator detectors for muon counting 

(in subset of array)

- Increased duty cycle of fluorescence detector

Scintillator deployed
+Acquiring data


