

Multiplexed magnetic microcalorimeter arrays for astroparticle physics

Sebastian Kempf

HIRSAP Workshop 2021 | Hybrid Meeting KIT - Online | November 2nd, 2021

www.kit.edu

Outline

- magnetic microcalorimeters basics and state-of-the-art
- application in neutrino physics: the ECHo experiment
- FRM-based dc-SQUID multiplexing
- microwave SQUID multiplexing
- hybrid microwave SQUID multiplexing
- conclusion and outlook

Outline

- magnetic microcalorimeters basics and state-of-the-art
- application in neutrino physics: the ECHo experiment
- FRM-based dc-SQUID multiplexing
- microwave SQUID multiplexing
- hybrid microwave SQUID multiplexing
- conclusion and outlook

today: mostly focused on detector readout

Cryogenic microcalorimeters

Cryogenic microcalorimeters

Magnetic microcalorimeters

Superconducting quantum interference devices

6 Oct. 6th, 2021 HIRSAP Workshop 2021

Institute of Micro- and Nanoelectronic Systems

SQUID-based detector readout

dc-SQUID = magnetic flux to voltage / current converter

- compatibility with mK operation temperatures
- low power dissipation: *P*_{diss} ~10 pW...1 nW
- **•** near quantum-limited noise performance: $\varepsilon \sim 1 \text{ h possible}$

Two-stage SQUID setup with flux-locked loop

cryogenic SQUID-based amplifier chain with ultrafast feedback electronics

impedance matched

Alternative concept: Flux ramp modulation

quasi-continuous SQUID characteristic measurement by applying sawtooth-shaded current signal through modulation coil

K. W. Lehnert *et al.*, IEEE Trans. Appl. Supercond., **17** (2007) 705
J. A. B. Mates *et al.*, Appl. Phys. Lett. **92** (2008) 023514
J. A. B. Mates *et al.*, J. Low Temp. Phys. **167** (2012) 707

Transformer-coupled detectors

present workhorse: transformer-coupled meander-shaped pickup coil

Integrated detectors

M. Krantz, SK *et al.*, IEEE Explore - ISEC 2019 M. Krantz, PhD thesis, Heidelberg University (2020)

Integrated detectors

integrated detectors don't suffer from transformer losses, but are affected by SQUID power dissipation

M. Krantz, PhD thesis, Heidelberg University (2020) V. Zakosarenko *et al.*, Supercond. Sci. Technol. **16** (2005) 1404-1407 R. Stolz *et al.*, IEEE Trans. Appl. Supercond. 15 (2005) 773-776

Tackling power dissipation of integrated detectors

isolating SQUID shunts by placement on SiO2 membranes (decoupling of SQUID and sensor)

M. Krantz, PhD thesis, Heidelberg University (2020)

Key features of MMCs

outstanding interplay between ultra-sensitive paramagnetic thermometer and near-quantum limited superconducting electronics device

S. Kempf et al., J. Low Temp. Phys. 193 (2018) 365

MMC all around the world...

Neutrino mass investigation using ¹⁶³Ho

Idea: Calorimetric measurement of the energy spectrum of the electron capture decay of ¹⁶³Ho

A. De Rujula, M. Lusignoli, Phys. Lett. B 118 (1982) 429

Neutrino mass investigation using ¹⁶³Ho

Idea: Calorimetric measurement of the energy spectrum of the electron capture decay of ¹⁶³Ho

A. De Rujula, M. Lusignoli, Phys. Lett. B 118 (1982) 429

Neutrino mass investigation using ¹⁶³Ho

Idea: Calorimetric measurement of the energy spectrum of the electron capture decay of ¹⁶³Ho

Previous and recent measurements

Previous and recent measurements

Previous and recent measurements

MMC based measurements

Pixels, pixels, pixels...

Crab Nebula - NGC 1952

Pixels, pixels, pixels...

High-resolution superconducting sensors (HSS)

HSS = large-scale production and development center for high-resolution superconducting sensors (jointly operated by IPE, IMS and KIP)

Readout of large-scale detector arrays

simplest idea: multiply single-channel detector readout

- number of wires
- parasitic heat load
- costs
- complexity

scaling sets practical limit on array size (at least for cryogenic devices)

Readout of large-scale detector arrays

simplest idea: multiply single-channel detector readout

- number of wires
- parasitic heat load
- costs
- complexity

scaling sets practical limit on array size (at least for cryogenic devices)

more sophisticated: readout scheme minimizing electronic channels ('soft' multiplexing)

Cryogenic multiplexing

idea: series connection of dc-SQUIDs simultaneously flux ramp modulated via common modulation coil coupled differently to each SQUID

idea: series connection of dc-SQUIDs simultaneously flux ramp modulated via common modulation coil coupled differently to each SQUID

simplest possible prototype (proof-of-concept) with four individual readout channel

'simple' realization of frequency-division multiplexing suitable for reading out tens of individual detectors

D. Richter, SK et al., Appl. Phys. Lett. 118 (2021) 122601

Prototype layout

modulation coil coupling adjust by overlap between coil and SQUID loop

Institute of Micro- and Nanoelectronic Systems

simplest possible prototype (proof-of-concept) with four individual readout channel

GHz frequency-division multiplexing (GHz-FDM)

idea: detector signals are modulated on independent GHz carrier signals

Non-hysteretic rf-SQUIDs

Non-hysteretic rf-SQUIDs

Non-hysteretic rf-SQUIDs

Non-hysteretic rf-SQUIDs

Microwave SQUID Multiplexing

ECHoMUX - µMUX for the ECHo experiment

D. Richter, *PhD thesis*, 2021 + in preparation

Readout electronics

N. Karcher et al., J Low Temp Phys 200, 261–268 (2020)

Readout electronics

development by IPE @ KIT

ECHoMUX - some results

64 pixel detector array connect to μ MUX (latest generation); full online demodulation

first truely multiplexing demonstration of magnetic microcalorimeters some issues still to be resolved (ongoing)

ECHoMUX - technology challenges

internal quality factor of Nb microwave resonators significantly affects achievable energy resolution

Institute of Micro- and Nanoelectronic Systems

µMUX - theory challenges

µMUX - theory challenges

but: high *P*_{rf}... ...reduces resonance frequency shift

...and creates asymmetric resonance curves

µMUX - theory challenges

but: high *P*_{rf}... ...reduces resonance frequency shift

...and creates asymmetric resonance curves

- model too complex to perform empirical or analytical optimization

µMUX modeling

µMUX modeling

,empirical' optimization of a microwave SQUID multiplexer rather complex due to the existence of various physical effects, noise sources, readout techniques etc.

simulation agree qualitatively very well with experiments, fine-tuning of simulation parameters ongoing simulation based optimization in future feasible

ìM5

µMUX modeling

,empirical' optimization of a microwave SQUID multiplexer rather complex due to the existence of various physical effects, noise sources, readout techniques etc.

simulation agree qualitatively very well with experiments, fine-tuning of simulation parameters ongoing simulation based optimization in future feasible

ÎM5

MMCs for cosmology (LLAMA-QUBIC)

QUBIC and LLAMA plan to explore the inflation age of the universe by detecting and characterizing primordial B-modes of the cosmic microwave background polarization

0

QUBIC

TES with SQUID readout and cryogenic SiGe ASICS

receiver technology for LLAMA not yet fixed; MMBs (magnetic microbolometers) are one of the possible option

MMBs for LLAMA

absorber coupled detectors

antenna coupled detectors

→ see talks of Juan Bonaparte and Juan Manuel Geria

îm5

µMUX applications

bolometric applications

e.g. Dober et al., Appl. Phys. Lett. 118 (2021) 062601

IIIIII			
		1-1-1-1-1-1-1-1-1-1-1-1-1	

small bandwidth per channel ~100 Hz to 1 kHz

guard factor to minimize crosstalk

(potential) frequency distance between resonators:
 ~1kHz to 10kHz

calorimetric applications

e.g. Richter et al., in preparation

Fabrication tolerances

example: (semi-) lumped element resonator

Fabrication tolerances

example: (semi-) lumped element resonator

FRM-based hybrid µMUXing Karlsruhe Institute of Technology 'conventional' µMUXing FRM-based hybrid µMUXing feedline feedline $C_{\rm c}$ \mathcal{L}_{c} f_{res} couple several independent SQUIDs to single resonator unique FRM-carrier frequency for each SQUID M-M S.2 L_{S,3} $M_{\rm mod}$ $M_{\rm mod,1}$ M_{mod,2} $M_{\rm mod,3}$ \mathbf{m} $\mathbf{\gamma}$ L_{mod} L_{mod}

Prototype: HyMUX

FRM carrier frequency adjusted by using parallel inductors

Karlsruhe Institute of Technology

HyMUX - characterization

HyMUX - characterization

HyMUX - the ultimate swiss army knife?

îms

Monte-carlo simulation framework for μ MUX modeling and optimization

 μ MUX simulation for calorimetric detectors ($\Delta f_{\rm BW} \simeq \Delta f_{\rm res}^{\rm max} \sim 1 \, {
m MHz}$)

ìm5

Monte-carlo simulation framework for µMUX modeling and optimization

 μ MUX simulation for calorimetric detectors ($\Delta f_{
m BW} \simeq \Delta f_{
m res}^{
m max} \sim 1\,{
m MHz}$)

îm5'

Monte-carlo simulation framework for µMUX modeling and optimization

6 6 6 N = 1N = 1N = 15 5 5 N = 2N = 24 4 4 = 3accepted noise degradation factor: $\times \sqrt{2}$ $\sqrt{S_{\Phi, \text{ white}}} / \frac{\mu \Phi_0}{\sqrt{H_Z}}$ 8 0 $\sqrt{S_{\Phi}}$, white $\frac{\mu \Phi_0}{\sqrt{Hz}}$ $\begin{array}{c} \left(S_{\Phi, \text{ white }} \right) & \frac{\mu \Phi_0}{\sqrt{H_Z}} \\ c & c \\ \end{array}$ N = 4N = 5 $f_{\rm ramp}^{\rm max}$ $\mathbf{1} \times \sqrt{2}$ $1 \times \sqrt{2}$ 1 1 1 10⁵ 10⁶ 10⁵ 10⁵ 10⁶ 10⁶ $f_{\rm ramp}$ / Hz f_{ramp} / Hz f_{ramp} / Hz

 μ MUX simulation for calorimetric detectors ($\Delta f_{\rm BW} \simeq \Delta f_{\rm res}^{\rm max} \sim 1 \, {
m MHz}$)

Monte-carlo simulation framework for μ MUX modeling and optimization

feasible technique for bolometers but likely not for calorimeters

Summary and conclusion

magnetic microcalorimeters and SQUIDs

- flexible low-temperature detectors
- described by standard equilibrium thermodynamics
- wide range of applications

multiplexed detector arrays

- FRM based dc-SQUID multiplexing for medium-sized arrays
- microwave SQUID multiplexing for large-scale arrays
- hybrid microwave SQUID multiplexing for bolometric arrays

future work

- multiplexer optimization and maturing
- fabrication technology
- bolometric arrays

Summary and conclusion

magnetic microcalorimeters and SQUIDs

- flexible low-temperature detectors
- described by standard equilibrium thermodynamics
- wide range of applications

multiplexed detector arrays

- FRM based dc-SQUID multiplexing for medium-sized arrays
- microwave SQUID multiplexing for large-scale arrays
- hybrid microwave SQUID multiplexing for bolometric arrays

future work

- Thank you for your attention! multiplexer optimization and maturing
- fabrication technology
- bolometric arrays

Multiplexed magnetic microcalorimeter arrays for astroparticle physics

Sebastian Kempf

HIRSAP Workshop 2021 | Hybrid Meeting KIT - Online | November 2nd, 2021

www.kit.edu