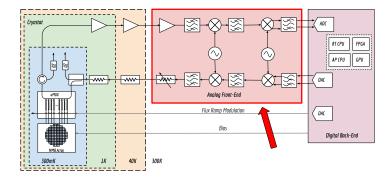
Front-end Design of the Read-Out System for Micromachined Sensors

Eng. García, Manuel

HIRSAP Workshop 2021 Universidad Nacional de San Martín - Karlsruher Institut für Technologie Directors: Prof. Dr. Platino, Manuel - Prof. Dr. Weber, Marc. Scientific Supervisor: PD. Dr. Sander, Oliver.

manuel.garcia@iteda.cnea.gov.ar

November 2, 2021



Workplan and Previous Work

Workplan

Main Objective

Design a compact and scalable RF Analog Front-End for the readout system of Low Temperature Detectors using frequency division multiplexing in the range of GHz.

Previous Work

Key Points

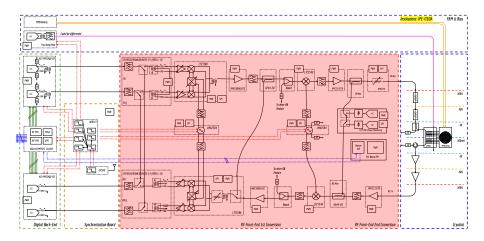
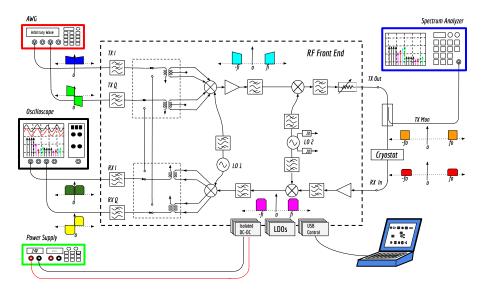
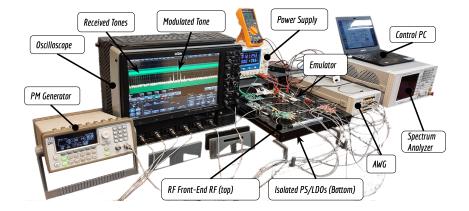

- Read-out Powers.
- Multiplexing Factor.
- Signal to Noise Ratio.
- Long Term Stability.

TABLE VIII. RF Front-End parameters for the QUBIC project.

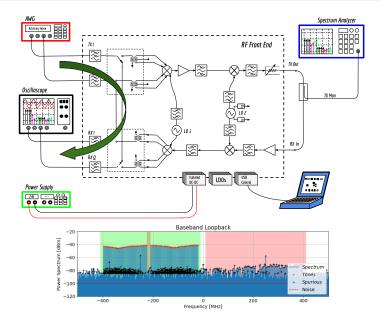
Parameter	Symbol	Unit		Step	Maximum
DAC Number	NDAC	Unit	5	-	-
DAC Sample Rate	<i>fdac</i>	MHz	1000	-	-
DAC SFDR	SFDR _{DAC}	dBFS	60	-	-
DAC ENOB	n _{DAC}	bits	16	-	-
DAC Full Scale	FSDAC	Volt	0.5	-	-
ADC Number	NADC	Unit	5	-	-
ADC Sample Rate	<i>fadc</i>	MHz	1000	-	-
ADC ENOB	nADC	bits	10.6	-	-
DAC SFDR	SFDR _{DAC}	dBFS	60	-	-
ADC Full Scale	FSADC	Volt	0.5	-	-
Clock Jitter	τ_{it}	fs	-	-	125
IQ Phase Control	$\Delta \theta_k$	0	-	0.1	-
IQ Amp. Control	ΔA_k	dB	-	0.05	-
DC offset Control	ΔV_{DC}	μV	-200	2	200
Rx Gain	G_{Rx}	dB	17	0.5	37
Tx Gain	G_{Tx}	dB	-25	0.5	-5
Gain Slope	G_{Tx}	dB	-	-	5
Gain Ripple	G_{Tx}	dB	-	-	3
Rx Noise Fig	NF_{Rx}	dB	2	-	18
Tx Noise Fig	NF_{Tx}	dB	10	-	30
Rx IIP3	$IIP3_{Rx}$	dBm	13	-	30
Tx IIP3	$IIP3_{Tx}$	dBm	30	-	47
Rx IIM2	$IIP2_{Rx}$	dBm	20	-	-
Tx IIM2	$IIP2_{Tx}$	dBm	20	-	-
Rx IP1dB	$P1dB_{Rx}$	dBm	3	-	-
Tx IP1dB	$P1dB_{Tx}$	dBm	20	-	-
LO Frequency	flo	MHz	4000	0.1	8000
Frequency Stability	δf	ppp/h	-	-	10
LO Phase Noise	$\mathcal{L}_{0.1Hz}$	dBc/Hz	-	-	-7
LO Phase Noise	\mathcal{L}_{10Hz}	dBc/Hz	-	-	-47
LO Phase Noise	\mathcal{L}_{100Hz}	dBc/Hz	-	-	-67
Power Stability	δP	dBm/h	-	-	0.1
Phase Stability	$\delta \theta$	$^{o}/h$	-	-	1

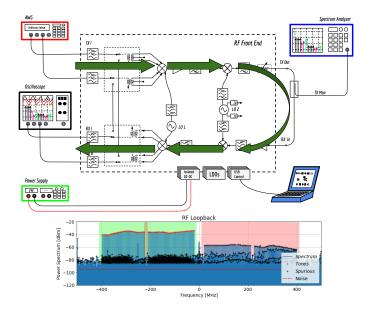
Work Progress

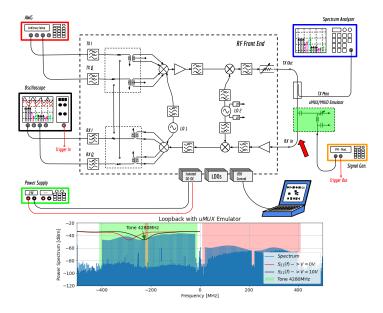

Read-Out System Scheme

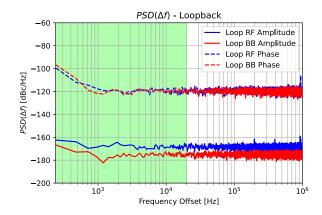

Reduced Front End

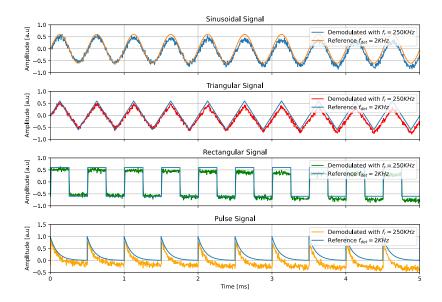
How does the RF Front end Degrades Signal Quality?.


Reduced RF Front-End Characterization.


Characterization Set-Up.


Baseband Loopback.


RF Loopback


uMUX Emulator

Preliminary Results.

Preliminary Results

Publications, Events and Courses

Events

- 7th MT Meeting DTS mirror agenda - February 2021.

KSETA Courses

- Introduction to Quantum Physics October 2021.
- Low-Temperature (Superconductive) Detectors October 2021.

Languages

- Deutsch A2.1 (UNSAM).
- Deutsch A2.2 (UNSAM) (in progress...).

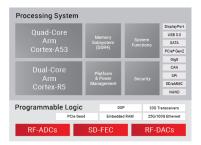
QUBIC Integration LAB

Future Work

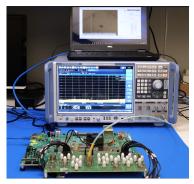
Measurements Processing and Validation.

Signals

- Spectral and Temporal Characteristics.
- Amplitude Distribution and Powers.


• Signal to Noise Ratio Vs. Number of Tones.

- Additive Noise.
- Multiplicative Noise.
- Spurious and Synchronization.

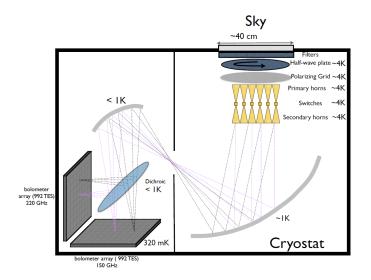

Integration.

- Include a Frequency Reference.
- Integration with other Sub-systems.
- Buy/design Missing components.

RF SoC Characterization

(a) RF SoC Architecture

(b) RF SoC Evaluation board.


Possible Improvements:

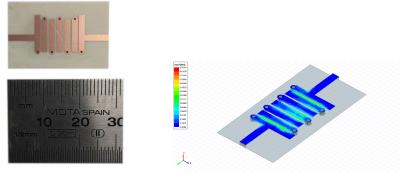
- Integration and Low Power Consumption
- Bands Combining/Splitting
- Synchronization and Stability

Thanks!

Questions?

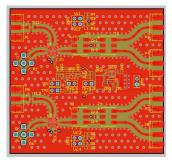
Backup - Telescope

RF Front End



(a) RF FE Top (Radio-frequency)

(b) RF FE Bottom (Power Supplies).

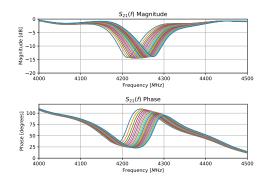

Filters Design

(a) Intedigital Band pass Filter.

(b) EM Simulation.

SE to DIFF Converter

(a) SE to DIFF Converter CAD.



(b) SE to DIFF Board.

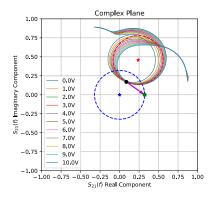
uMUX Emulator

(a) MKID/ μ MUX Emulator.

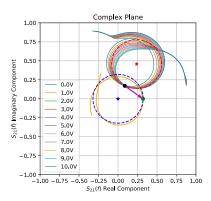
(b) $S_{21}(f)$ Vs. Voltage.

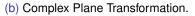
uMUX Emulator Bias

$$V_{gen}(t) = V_{dc} + V_{ac} \cdot \sin[2\pi f_r t + \beta \cdot x_{det}(t)]$$
(1)

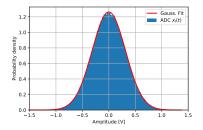

$$V_{gen}(t) = V_{dc} + V_{ac} \cdot \sin[2\pi f_r t + \beta \cdot \sin(2\pi * f_{det} t)]$$
(2)

$$f_{res}(t) = \frac{1}{2\pi\sqrt{LC_0 + LC[V_{gen}(t)]}} \approx f_0 + \Delta f \cdot V_{gen}(t)$$
(3)

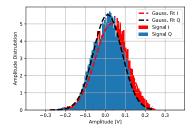

Attention


More detailed model should use Taylor's series due to the non-linearity frequency vs. voltage.

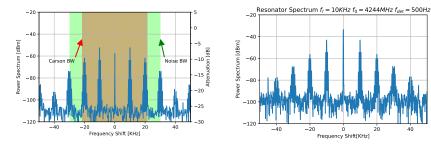
IQ Plane



(a) Resonator Complex Plane.



Signal Distribution



(a) Baseband distribution Simulation.

(b) Baseband distribution Real Data.

Signal Spectrum

(a) Simulation.

(b) Real data.

20

40

RF Cryo-circuit

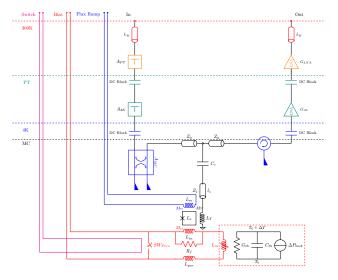
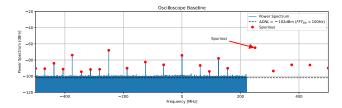
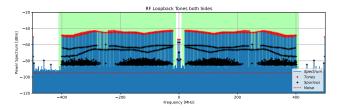




Figure: RF Chain inside Cryostat.

Extra Spectrum

Figure: Scope Baseline.

Figure: Two Sided Spectrum.