

Studies for cross-calibration between Sd-SSd and Md

02/11/2021

Lic. Carmina Pérez Bertolli Supervisors: Prof. Dr. Brian Wundheiler, Prof. Dr. Ralph Engel

Karlsruher Institut für Technologie

The main idea of my work plan is to study the correlation between the signals of Sd-SSd and Md to develop an unbiased estimator of the muon component

Outline

- Muon Attenuation Studies
- Current Work: Detector simulation with Offline
- UMD Online Monitoring

Muon attenuation: energy cut method

Studies on muon attenuation considering a sharp cut on their energy to reach the UMD depth

The Prague libraries

- Hadronic model: [EPOS_LHC, QGSJetII-04, Sibyll-2.3c]/
 - Primary: [photor³, proton, helium, oxygen, iron]
 - * Energy bin: [16.5_17.0; 17.0_17.5; 17.5_18.0]/18.0_18.5
 - 1250 showers January atmosphere (Summer): DAT{010000..011249}.tar.gz, DAT{010000..011249}.small.tar.gz,
 - 1250 showers March atmosphere (Autumn): DAT{030000..031249}.tar.gz
 DAT{030000..031249}.small.tar.gz
 - 1250 showers August atmosphere (Winter): DAT{080000..081249}.tar.gz
 - DAT{080000..081249}.small.tar.gz
 - 1250 showers September atmosphere (Spring): DAT{090000..091249}.tar.gz
 DAT{090000..091249}.small.tar.gz

 $\theta = [0_{15}, 15_{30}, 30_{45}]$

GAP 2018-043

Muon attenuation: Stopping power method

$$-\left\langle rac{dE}{dx}
ight
angle =rac{4\pi}{m_ec^2}\cdotrac{nz^2}{eta^2}\cdot\left(rac{e^2}{4\piarepsilon_0}
ight)^2\cdot\left[\ln\!\left(rac{2m_ec^2eta^2}{I\cdot(1-eta^2)}
ight)-eta^2
ight]$$

Index = 24 Absorb	15: silico ber with <	on dioxide Z/A> = 0.4	(fused qua 49930, den	artz) (Si0 sity = 2.20	\sub{2}) 00 (revised	±)					
Sternheimer	coef: a	k=m_s	x_0 >	x_1 I[e	V] Cbar	delta0					
	0.084	41 3.5064	0.1500	3.0140 139	9.2 4.0560	9 0.00					
(Restricted	energy lo	oss for Tc	ut = 0.05 M	MeV							
Table writt	en with (1X, 1P9E10	.3,0PF8.4,	f8.5,1pE10	.3)	post-Bo	rn included	l in pair p	rod		
*** Results	below 10	MeV are no	ot dependal	ble ***		()?		1990 (1990)			
Т	р	Ionizatio	n brems	pair	photonuc	Radloss	dE/dx	CSDA Range	delta	beta	dE/dx_R
[MeV]	[MeV/c]			[MeV cr	m^2/g]			[g/cm^2]			[MeV cm^2/g]
1.000E+00	1.457E+01	2.660E+00	0.000E+00	0.000E+00	4.793E-05	4.793E-05	5.321E+00	2.327E-03	0.0000	0.13661	4.038E+01
1.200E+00	1.597E+01	3.498E+01	0.000E+00	0.000E+00	4.802E-05	4.802E-05	3.498E+01	7.665E-03	0.0000	0.14944	3.498E+01
1.400E+00	1.726E+01	3.096E+01	0.000E+00	0.000E+00	4.811E-05	4.811E-05	3.096E+01	1.376E-02	0.0000	0.16119	3.096E+01
1.700E+00	1.903E+01	2.653E+01	0.000E+00	0.000E+00	4.824E-05	4.824E-05	2.653E+01	2.426E-02	0.0000	0.17725	2.653E+01
2.000E+00	2.066E+01	2.331E+01	0.000E+00	0.000E+00	4.838E-05	4.838E-05	2.331E+01	3.635E-02	0.0000	0.19186	2.331E+01
2.500E+00	2.312E+01	1.950E+01	0.000E+00	0.000E+00	4.860E-05	4.860E-05	1.950E+01	5.991E-02	0.0000	0.21376	1.950E+01
3.000E+00	2.536E+01	1.686E+01	0.000E+00	0.000E+00	4.883E-05	4.883E-05	1.686E+01	8.758E-02	0.0000	0.23336	1.665E+01
3.500E+00	2.742E+01	1.491E+01	0.000E+00	0.000E+00	4.905E-05	4.905E-05	1.491E+01	1.192E-01	0.0000	0.25120	1.455E+01
4.000E+00	2.935E+01	1.341E+01	0.000E+00	0.000E+00	4.928E-05	4.928E-05	1.341E+01	1.546E-01	0.0000	0.26763	1.296E+01

https://pdg.lbl.gov/2019/AtomicNuclearProperties/

Muon attenuation: Stopping power method

Proton, $E = 3.1 \times 10^{17}$, $\theta = 5^{\circ}$ Density distributions on-ground 104 250 m 350 m 🗐 🛛 450 m 10³ Density $/ m^{-2}$ 750 m 10^{-1} counts 10² 10¹ on-ground(mean energy: 2.20 GeV) 100 underground (mean energy: 2.34 GeV) 10^{-2} 10^{-2} 10^{-1} 100 10² 10¹ -7.5 -2.5 2.5 7.5 -10.0-5.00.0 5.0 10.0 Energy / GeV r/m

- A displacement of the mean energy can be observed as well as more low energy muons for the underground histogram (lhs).
- At higher distances from the core lower muon densities are observed (rhs).

Attenuation curves: dependency of the ratio

- The attenuation curves get steeper for lower zenith angles
- Ratio expected ε {0.57; 0.76} for p and ε {0.64;
 0.83} for Fe at 450 m

Hadronic Model: EPOS-LHC

• A dependence of the curves on the energy of the primary can not be observed

Current work: Detector simulation and reconstruction

Signals at 450 m for 10 protons with E=5.95x10¹⁷ eV, Θ =27° and Model = EPOS-LHC

Goal: development of codes and scripts to produce and manage simulations and extract relevant information for analyses

Current work: Detector simulation and reconstruction

Very preliminary results. More statistics are needed.

UMD Online Monitoring

- This tool was developed and is already available in the ITeDA server for shifters.
- A weekly report is produced based on the four monitoring observables.
- Already 9 shifters in the last 3 months.

Summary and Outlook of current work

Backup

Md Shifts

bkg rate status: all modules

	······································
•••••••	••••••••••••••••••••••••••••••••••••••
	•••••••••••••••••••••••••••••••••••••••
Fit. Accepted	
 Fit. Accepted Fit. Observed 	•••••••••••••••••••••••••••••••••••••••
 Fit. Accepted Fit. Observed No Fit. Accepted 	•••••••••••••••••••••••••••••••••••••••
 Fit. Accepted Fit. Observed No Fit. Accepted No Fit. Observed 	

Observed:

Data points outside the fit (8 modules): Catherina 102, Chichino Jr 101 and 102, Comenius 103, Correo Argentino 101, 102 and 103, Phil Collins 103.

Example of background monitoring from a report by Gabriel and Varada

Shifters: Marina, Joaquín, Gabriel, Varada, Flavia, Federico, Brian

This tool is already available in the ITeDA server for shifters

Shifters write a weekly report about the performance of the detectors based on the four monitoring variables

Attenuation curves: dependency on the energy on-ground

Attenuation curves dependency of the energy underground

