UMD characterization

Joaquín de Jesús

Hirsap meeting 2-3 Nov 2021

Outline

- 1. Study on crosstalk
- 2. Features of ADC calibration files
- 3. Study on fiber attenuation binary channel integrator channel
- 4. Study on corner-clipping muons

Outline

- 1. Study on crosstalk
- 2. Features of ADC calibration files
- 3. Study on fiber attenuation binary channel integrator channel
- 4. Study on corner-clipping muons

- > There are 5 disconnected fibers in module 101 of counter 93
- > Most signals in these bars are correlated with showers

- > 0,3 % of crosstalk events
- > Occuring when module samples high number of particles
 - → Muons hitting SiPM array
 - Photons from electronic cascade of neighboring SiPMs
- ~1/3 caused by scintillator 29

Outline

- 1. Study on crosstalk
- 2. Features of ADC calibration files
- 3. Study on fiber attenuation binary channel integrator channel
- 4. Study on corner-clipping muons

2. ADC calibration files

360000 background events (1 hour of T1 triggers)

- > Idea: use background muons to obtain \overline{Q}_{μ}
- An algorithm was implemented in the electronics to extract calibration data (runs in parallel to normal acquisition).

One plain text per module per day with calibration data

2. Geometrical dependence on rate

- (1762) (1761) (1761) (1761) (1761) (1761) (1760) (1767) (1767) (1767) (1767) (1767) (1767) (1767) (1767) (1769) (1779)
- atmospheric muons?, sub-threshold showers?
- Higher rate in lateral scintillators (1, 32, 33, 64)

2. Seasonal modulation

Counter 93, module 101. Jan 2020 – Oct 2021 2020-03-05 2020-06-11 2020-11-20 2021-05-01 2021-08-07 2020-03-05 2020-06-11 2020-11-20 2021-05-01 2021-08-07 8000 signal + noise signal + noise 1600 noise noise signal 7000 1400 6000 1200 5000 counts) 1000 event ÷ 4000 Charge (ADC 800 JUN 3000 600 2000 400 1000 200 0 0 100 200 300 400 500 600 100 200 300 500 600 0 400 Days since 2020-01-01 Days since 2020-01-01 Change in firmware

 Higher number of T1s w/ muon pattern in winter (both in "signal+noise" and "noise" windows) No modulation in charge

2. Comparison of \overline{Q}_{μ} with showers

- · T4 events from Jan 2018 to Feb 2021
- · Modules with only one strip with muon pattern are used

2. Comparison of \overline{Q}_{μ} with showers

 \overline{Q}_{μ} obtained in ADC calibration files (T1) are systematically higher (~45%)

Outline

- 1. Study on crosstalk
- 2. Features of ADC calibration files
- 3. Study on fiber attenuation binary channel integrator channel
- 4. Study on corner-clipping muons

3. Study on fiber attenuation: binary channel

- Fiber attenuation: anti correlation of <1s> with fiber length
- GAP2021_034

3. Study on fiber attenuation: ADC channel

- > Fiber attenuation: anti correlation of $\langle Q_{\mu} \rangle$ with fiber length
- > Fit with A*exp(-x/ λ)
- > λ values are consistent with T1s and T4s
- > GAP2021_052

Outline

- 1. Study on crosstalk
- 2. Features of ADC calibration files
- 3. Study on fiber attenuation binary channel integrator channel

4. Study on corner-clipping muons

4. Determining NCC(θ , $\Delta \Phi$)

 $\Delta t = 0$

4. pcc(θ, ΔΦ)

 $p_{\rm CC}(\theta, \Delta \phi) = a(\theta) + b(\theta) \sin(\Delta \Phi)$

Validate with simulations How is pcc related to the bias? Data-driven corner-clipping correction?

Summary

1. Crosstalk

- → 0,3 % of crosstalk events
- → occuring when module samples high number of particles
- 2. ADC calibration files
 - → rate distribution depends on module orientation
 - → seasonal modulation in rate
 - → \overline{Q}_{μ} consistent with those obtained in inclined showers
- 3. Study on fiber attenuation
 - → anti-correlation of <1s> with fiber length
 - $\ensuremath{\stackrel{\bullet}{}}$ anti-correlation of \overline{Q}_{μ} with fiber length
- 4. Study on corner-clipping muons
 - → $p_{CC}(\theta, \Delta \Phi)$ obtained and fitted with $a(\theta) + b(\theta)sin(\Delta \Phi)$
 - → $a(\theta)$, $b(\theta)$ fitted with $\alpha_0 + \alpha_1 \sec(\theta)$
 - → next steps:
 - Validate method with simulations
 - Strategy for a corner-clipping correction

Summary

Back up

Scintillators fibers in SiPM array

Neighboring fibers in SiPM array

- 0,3 % of crosstalk events
- Occuring when module samples high number of particles
- ~1/3 caused by scintillator 29

Removing scintillator 29

2. Geometrical dependence on rate

2. Seasonal modulation

Counter 93, module 101. Jan 2020 – Oct 2021 Daily mean charge (HG)

No modulation in charge

2. Comparison of \overline{Q}_{μ} with showers

 \overline{Q}_{μ} obtained in ADC calibration files (T1) are systematically higher (~45%)

2. Comparison of \overline{Q}_{μ} with showers

- T4 events from Jan 2018 to Feb 2021
- Modules with only one strip with muon pattern are used

in 'shower scope'

with tMax from ADC

00001111000....

tBinary

•

4. Determining NCC(θ , $\Delta \Phi$)

