Cosmic rays arrival direction maps

Emily Martins, Dr. Darko Veberič, Dr. Markus Roth, Prof. Dr. Ralph Engel, Dr. Federico Sanchez

November 3, 2021

Goal

Evaluate the arrival direction of cosmic rays by atomic mass.

First milestone: Produce arrival direction sky maps.

In particular, if there is an interest in a multipolar structure, it is advantageous to average out (**smooth**) smaller structures in the AD maps.

Benchmark

Table 2: Three dimensional dipole reconstruction. Directions of dipole components are shown in equatorial coordinates.

Energy [EeV]	Dipole component d _z	Dipole component d_{\perp}	Dipole amplitude d	Dipole declination δ_d [°]	Dipole right ascension α_d [°]
4 to 8	-0.024 ± 0.009	$0.006^{+0.007}_{-0.003}$	$0.025^{+0.010}_{-0.007}$	-75^{+17}_{-8}	80 ± 60
8	-0.026 ± 0.015	$0.060\substack{+0.011\\-0.010}$	$0.065\substack{+0.013\\-0.009}$	-24^{+12}_{-13}	100 ± 10

А

В

Reconstruct the flux sky-map

Two methods

Method N/E

$$\Phi_{\rm raw}(\alpha,\delta) = \frac{N(\alpha,\delta)}{\omega(\alpha,\delta)}$$

$$\Phi_{\text{smoothed}}(\alpha, \delta) = \int_{\text{Sphere}} \Phi_{\text{raw}}(\alpha, \delta) S(\alpha, \delta, \theta, \phi) \, d\Omega$$

Sulivan Marafico - March 2021 OCM presentation

0.41 0.42 0.43

Flux [km⁻² sr⁻¹ yr⁻¹]

0.44

Tasks

- Compare smoothing functions, defining a relationship between them;
- Using HEALPix¹, plot the arrival direction maps;
- Recover previously published results, as a consistency test;
- Incorporate the 2 methods for obtaining the flux map;
- Check effects and discuss.

¹http://healpix.sourceforge.net

Distribution functions

To ensure the Gaussian distribution have a concentration such that, up to the a distance R', the number of events within this region is the same as in the top-hat distribution, e.g. 68%.

Equating both cumulative distribution functions:

$$\int_{0}^{2\pi} \int_{0}^{R'} \frac{1}{\pi R^2} r \, dr \, d\theta = \int_{0}^{2\pi} \int_{0}^{R'} \frac{1}{2\pi \sigma^2} e^{\frac{-1}{2} \left(\frac{r}{\sigma}\right)^2} r \, dr \, d\theta = 0.68 \tag{1}$$

This leads to the relationship: $\sigma=0.545317$ R.

R is the scale of the smoothing (the beam window radius).

A - B / < A >

Top-hat

8/13

G - th / < G >

∢

Top hat

Gaussian

G - th / < G >

Figure 1: Flux maps for Science paper dataset. Marker + represents dipole coordinates (ra, dec) = (100°,-24°).

Top hat

Gaussian

Figure 2: Significance maps for Science paper dataset. Marker + represents dipole coordinates (ra, dec) = $(100^{\circ}, -24^{\circ})$.

Summary

- In both flux-calculation methods, the Gaussian smoothed maps present no localized excess regions;
- Since the goal of applying smoothing is to overlook smaller structures, we proposed for the AD group to adopt the Gaussian function for this purpose in the upcoming publications;
- The impact is restricted to the visualization of the data;
- Ongoing discussion on optimal scale to perform such smoothing;
- A GAP note is under preparation.

Muito obrigada!

Backup & additional information

Dataset

The datafile *eventsutc_a8.dat* used for this analysis is available at the AD Auger Wiki. It corresponds to the events recorded by SD 1500m from 01/01/2004 to 31/08/2016 with zenith < 80° and energies above 8 EeV. The 6T5 and 5T5-pos+ events are included and corrected for geomagnetic and weather effects, official Bad Periods excluded. Events are weighted as described in the Science paper.

Healpy

- We use healpy.sphtfunc.smoothing to smooth the maps;
- The above takes the **healpy.sphtfunc.gauss_beam** as default, which "Computes the spherical transform of an axisymmetric gaussian beam "as smoothing beam window;
- To use the top-hat, we modify the beam window used in *healpy.sphtfunc.smoothing* as done in the DR notebook;
- Key aspect is: Healpy takes a 1D function as a profile of the 2D function, deems it as axisymmetric and translates it to the spherical space by performing spherical harmonics transforms.

Healpy parameters

• nside = 64 this corresponds to over 49 thousand equal-area pixels.

HEALPix Pixel Information							
Res	NSide	NPixels	Mean Spacing (deg)	Area (sterad)			
0	1	12	58.6323	1.0471976 X 10 ⁺⁰⁰			
1	2	48	29.3162	2.6179939 X 10 ⁻⁰¹			
2	4	192	14.6581	6.5449847 X 10 ⁻⁰²			
3	8	768	7.3290	1.6362462 X 10 ⁻⁰²			
4	16	3072	3.6645	4.0906154 X 10 ⁻⁰³			
5	32	12288	1.8323	1.0226539 X 10 ⁻⁰³			
6	64	49152	0.9161	2.5566346 X 10 ⁻⁰⁴			
7	128	196608	0.4581	6.3915866 X 10 ⁻⁰⁵			
8	256	786432	0.2290	1.5978967 X 10 ⁻⁰⁵			
9	512	3145728	0.1145	3.9947416 X 10 ⁻⁰⁶			
10	1024	12582912	0.0573	9.9868541 X 10 ⁻⁰⁷			