

HIRSAP Annual Meeting Karlsruhe, November 2nd - 3rd

> Spectral fitting of inclined showers and analysis

Supervisors: Prof. Dr. R. Engel, Dr. T. Huege (KIT) Dr. D. Ravignani (UNSAM) PhD student: Sara Martinelli

03.11.2021

sara.martinelli@kit.edu

2160 CoREAS p-simulations:

Log(E) = [18.4, 18.6, ..., 20.0, 20.2] eV Azimuth = [0, 45, ..., 270, 315] deg Zenith = [65.0, 67.5, ..., 82.5, 85.0] deg

Simulated observer positions on a star-shaped grid

Geomagnetic (geo) and **Charge-excess (ce)** field decomposition*:

$$E_{\vec{v}\times\vec{B}}(\vec{r},t) = E_{geo}(\vec{r},t) + \cos\psi E_{ce}(\vec{r},t)$$
$$E_{\vec{v}\times(\vec{v}\times\vec{B})}(\vec{r},t) = \sin\psi E_{ce}(\vec{r},t)$$

Positions on the vxB-axis are excluded from the analysis

GEO and *CE* frequency spectra fitted separately in the 30-80 MHz band, comparing the models*:

$$L = A \cdot 10^{(f-f_0) mf}$$
$$Q = A \cdot 10^{(f-f_0) mf + (f-f_0)^2 mf_2}$$

*Models as described in: "Reconstructing the cosmic-ray energy from the radio signal measured in one single station" (JCAP) - C. Welling, C. Glaser, A. Nelles

• **CE:**
$$L = A \cdot 10^{(f-f_0) mf}$$

GEO:
$$Q = A \cdot 10^{(f-f_0) mf + (f-f_0)^2 mf_2}$$

Flattening of the spectrum around Cherenkov radius

Single event example: Frequency slope mf footprint

Example: slope lateral distribution for fixed zenith angle

r

GEOMAGNETIC COMPONENT

Quadratic Model

$$Q = A \cdot 10^{(f - f_0)mf} + (f - f_0)^2 mf_2$$

Function used to parameterize the slope:

$$A * [-exp(B * (r - r0)) + A2 * exp(-c * (r$$

5 parameters, to be parameterized as a function of *dmax*

X_{МАX} [g/cm²]

Full param. Function!

Full param. Function!

19

The quadratic term *mf2* shows a similar trend as the slope

CHARGE-EXCESS COMPONENT

Linear Model

$$L = A \cdot 10^{(f - f_0)mf}$$

$$A * [-exp(B * (r - r0)) + A2 * exp(-c * (r - r0)) + A2)]$$

Same function can be used to parameterize also the **CE slope**

Stations selected: 0.20 < r < 2.00

Full param. Function!

Conclusions

- The quadratic model describes better the geomagnetic spectrum
- Parameterizations for geomagnetic slope and quadratic term were found
- The charge-excess spectrum can be described by a linear model
 - Parameterization for charge-excess slope was found

Given zenith angle, xmax and antenna position, the slope and quadratic term can be analytically calculated and exploited in reconstruction algorithm to better constrain the geometry

BACKUP SLIDES

- Wider frequencies regions:
 - linear model inadequate
 - quadratic model significant better
- An additional correction, not only quadratic, could be needed (see two curvatures)

"Reconstructing the cosmic-ray energy from the radio signal measured in one single station", C. Welling, C. Glaser, A. Nelles

$$\begin{pmatrix} \mathcal{E}_{\theta} \\ \mathcal{E}_{\phi} \end{pmatrix} = \begin{pmatrix} A_{\theta} \\ A_{\phi} \end{pmatrix} 10^{f \cdot m_f + (f - 80 \text{MHz})^2 \cdot n_f} \exp(\Delta j)$$

Quadratic correction of a broader frequency bandwidth (80 – 300 MHz – ARIANNA) shows interesting features

With larger distances, the scatter increases due to early-lateness ("*splitting*" feature)

- 1. core refraction displacement correction*
- 2. early-late (el) correction of the distance**

Above about 2 Cherenkov radii, also thinning becomes relevant

- Stations above r = 2 are excluded from the analysis, with $r = \frac{d_{el}}{r_c}$
- * "Refractive displacement of the radio-emission footprint of inclined air showers simulated with CoREAS" - F. Schlüter, M. Gottowik, T. Huege, J. Rautenberg
- ** "A Rotationally Symmetric Lateral Distribution Function for Radio Emission from Inclined Air Showers" - T. Huege, L. Brenk, F. Schlüter

Example: slope lateral distribution for fixed zenith angle

Geomagnetic slope: single event examples

Red dots using full parameterization Green dots fitting the spectra

The CE quadratic term can just be set to zero

0.0010

0.0010

-0.0015 0.00 0.25

mf₂ [1/MHz²]

r

0.75

1.00 1.25

0.50

1.50

1.75 2.00

 $\theta = 65.0$ [deg] - geo

 $\theta = 85.0$ [deg] - geo

QUAD. TERM: GEO component

$$A * [-exp(B * (r - r0)) + A2 * exp(-c * (r - r0)** 2)]$$

Fit having all 5 free parameters

No statistical errors

Initial guesses: A , B , A2 , c , r0 = 0.000015, 0.8, 0.8, 1.35, 1.3 Fit bounds A , B , A2 , c , r0 , B/c: (0, 0.0006), (0, 2.0), (0.6, 1.5), (0, 3.0), (0, 2.0), (0, 2.0)

65:	7(+2)	
67.5:	3(+2)	*Outliers:
70.0:	0	
72.5:	3	A > 0.0004, A2 > 1.49,
75.0	0	c > 2.9, r0 > 1.9, B/c > 1.9
77.5:	4	
80.0	1	B < 0.001
82.5:	0	
85.0:	0	

At higher zeniths, the parameters distribution shows a "splitting", which is not related to any of the shower parameter

Parameters distribution as a function of dmax Number of total outliers: 22

QUAD. TERM: GEO component & opposite examples

Shower having 85.0 deg zenith angle (SIM008700)

Fit having all 5 free parameters

No statistical errors free fit

Err = 0.01 * y_max + 0.03 * y

A: 0.0001978 R0: 1.453906 A2: 0.758294 C: 1.3667073 B: 1.12834490

A: 0.0002983 R0: 1.612389 A2: 0.707670 C: 0.8200283 B: 0.9895646

QUAD. TERM: GEO component & opposite examples

Shower having 85.0 deg zenith angle (SIM018102)

Fit having all 5 free parameters

No statistical errors free fit

Err = 0.01 * y_max + 0.03 * y

A: 0.0001022 R0: 1.2579461 A2: 0.8376234 C: 2.35153833 B: 1.089889801 A: 0.0002440 R0: 1.5837290 A2: 0.7235978 C: 0.90286494 B: 1.01317462

QUAD. TERM: GEO component & opposite examples

Station 99 (SIM018102) Corresponding to green circle of previous slide

QUAD. TERM: GEO component

Fit having all 5 free parameters

Including uncertainties $Err = 0.001 * y_max + 0.001 * y$ Initial guesses: A , B , A2 , c , r0 = 0.000015, 0.8, 0.8, 1.35, 1.3 Fit bounds A , B , A2 , c , r0 , B/c: (0, 0.0006), (0, 2.0), (0.6, 1.5), (0, 3.0), (0, 2.0), (0, 2.0)

65:	225(!)	
67.5:	196(!)	*Outliers:
70.0:	139(!)	
72.5:	37	A > 0.0004, A2 > 1.49,
75.0	10	c > 2.9, r0 > 1.9, B/c > 1.9
77.5:	4	
80.0	1	B < 0.001
82.5:	1	
85.0:	12	

The "splitting seems to be gone, but further analysis on the uncertainties to be adopted are needed (backup)

Parameters distribution as a function of dmax Number of total outliers: 625

QUAD. TERM: GEO component

Residuals using different values for the errors model

Spectra fit & errors scaling

$$\chi^2$$
 / DoF = 1

 $Err = a * y_max + b * y$ with b = 0.001

65 deg, Geo

 $Err = a * y_max + b * y$ with b = 0.001

d_{el} / r_c

0.00 0.25 0.50 0.75 1.00 1.25 1.50

85 deg, Geo

Err = a * y_max + b * y

<mark>65 deg, CE</mark>

a = 0.25 , b = 0.20

Err = a * y_max + b * y

2.00

