

PIERRE

OBSERVATORY

AUGER 🔟

Karlsruher Institut für Technologie

Detecting inclined air showers with the AugerPrime Observatory

Felix Schlüter, HIRSAP Annual Workshop, Online 2021

Instituto de Tecnologías en Detección y Astropartículas (ITeDA)

Institute for Astroparticle Physics (IAP)

Recap, Recent Work, and Plans

- Last HIRSAP talk
- Not applicable for Auger

GAP 2020-54, JINST 16 P07048

- My first HIRSAP talks / POS(ICRC2021)209
- Still improving; SAL in prep; Talk at OCM

Performance of the Auger Radio Detector

- PoS (ICRC21) 262

- <u>This talk</u>

Last years:

- Refractive displacement of radio-emission footprint Eur. Phys. J. C 80, 643 (2020)
- Emission depth on the radiation; Contribution of low energetic electrons to radio signal

Goal: Extends sky-coverage of mass-sensitive measurements

- Radio Detector (RD) combined with Auger particle detector will provide muon-electron separation → mass sensitivity
- Very inclined air showers: $65^{\circ} \leq \theta \leq 85^{\circ}$
- Highest energies: $lg(E / eV) \ge 18.8$

Felix Schlüter - felix.schlueter@kit.edu

Expected performance of the AugerPrime Radio Detector

End-to-end simulation study:

Monte-Carlo air shower simulations Full detector simulation Full & realistic event reconstruction Physics performance

Felix Schlüter - felix.schlueter@kit.edu

RD detector simulation

- 1. Apply directional sensitivity (antenna pattern)
 - Use MC axis (plane wave front)
- 2. Apply absolute gain (amplifier, cables, impedance matching, ...)
 - Use preliminary galactic calibration
- 3. Apply Gaussian amplitude smearing (frequency independent)
 - Use 5% -> variation in AERA antennas when integrating over the whole sky
 - Directional dependent variation needs further investigation!
- 4. Resampling and clipping of traces
- 5. Analog to digital conversion (incl. flooring)
- 6. Add measured noise (one station, fairly clean!)
- 7. Add 6ns time jitter

Detection efficiency

- Min. 3 antennas with signal
- Strong dependence on zenith angle
 - Increasing footprint size
- Weak dependence on energy
- Nearly fully efficient for θ ≥ 70° at higher energies

Aperture for 3000 km² array

10-year event statistics

Shower reconstruction

Uncertainties

- Uncertainty does not describe resolution (mismatch between red and orange lines)
- Similar picture for E_{geo} and d_{max} ; Validated that the fit uncertainties are properly estimated \rightarrow uncertainty model for energy fluence

Felix Schlüter - felix.schlueter@kit.edu

Shower reconstruction

- Resolution < 10% at higher energies</p>
 - Improves with energy expected due to noise

- No significant bias
- No dependency on mass

Reweighing events to Auger spectrum

- Draw events for discrete energy bins but across all allowed zenith angles
- Re-use showers IgE <~ 19.3</p>
- Extract primary fractions: p_i(E) for two benchmark scenarios

Felix Schlüter - felix.schlueter@kit.edu

Relative number of muons

- Exp. exposure and two mass-composition scenarios*
- Use (simplified) binned analysis (no power law fit)
- Higher statistics (w.r.t. FD) at highest energies
- Fluctuation less affected by systematic uncertainties → discrimination potential

*AugerPrime Design Report arXiv:1604.03637

Felix Schlüter - felix.schlueter@kit.edu

Event-by-event mass discrimination

- 50-50 p-Fe, with expected energy spectrum
- Simple, energy-independent discriminator R_{μ} / $E^{0.9}_{em}$ (~ Fisher analysis)
 - Good energy resolution critical!
 - FOM of 1.5 \approx separation with X_{max} at σ_{xmax} = 15 g/cm²

Summary & Conclusion

Seattlesser.

End-to-end simulation study of the Radio Detector:

Monte-Carlo shower simulations, full detector simulation, measured background, realistic reconstruction

the second s

- Expected performance:
 - Event statistics: N(10y, IgE > 19) ~ 4100
 - Preliminary energy resolution: $\sigma_{E} < 10\%$
- Explored potential of hybrid measurements
 - Discriminate between composition scenarios
 - Discrimination between proton and iron / Contain a wealth of mass information

Outlook

- A lot of changes pending:
 - Run with updated trigger (UUB)
 - Run with pure noise traces
 - Twisting arrival direction for antenna response
 - Run validation with individual arrival directions

Backup

CORSIKA/CoREAS simulations

Select station to be simulated depending only on zenith angle

More details in backup! 18

Felix Schlüter - felix.schlueter@kit.edu

Selection for good RD energy reconstruction

 Selection bias for different primaries

	p / 1996	Fe / 1979	All / 3975
Has SD rec. LDF	1911 (95.7%)	1954 (98.7%)	3865 (97.2%)
min. RD signal stations: 5	1305 (68.3%)	1396 (71.4%)	2701 (69.9%)
Has RD spherical fit	1288 (98.7%)	1388 (99.4%)	2676 (99.1%)
$\alpha_{\rm RD} > 20.0^{\circ}$	1268 (98.4%)	1364 (98.3%)	2632 (98.4%)
$\theta_{\rm RD} \ge 68.0^{\circ}$	1232 (97.2%)	1310 (96.0%)	2542 (96.6%)
$\sigma_{\theta_{ m RD}} < 0.3^\circ$	1229 (99.8%)	1309 (99.9%)	2538 (99.8%)
Has RD rec. LDF	1229 (100%)	1309 (100%)	2538 (100%)
RD LDF with core	1229 (100%)	1309 (100%)	2538 (100%)
$n_{\rm stat}(r < 1.5r_0) > 0$	1201 (97.7%)	1289 (98.5%)	2490 (98.1%)
$\sigma_{S_{\rm rad}} < 60.0\%$	1145 (95.3%)	1266 (98.2%)	2411 (96.8%)
$\sigma_{d_{\max}} < 30.0\%$	1141 (99.7%)	1256 (99.2%)	2397 (99.4%)
χ^2 / ndf < 5.0	1113 (97.5%)	1235 (98.3%)	2348 (98.0%)
fitted core at limit ³	1106 (99.4%)	1233 (99.8%)	2339 (99.6%)
$\measuredangle(\hat{a}_{\rm RD},\hat{a}_{\rm SD})<1.50^\circ$	1098 (99.3%)	1222 (99.1%)	2320 (99.2%)

.

Energy reconstruction

• $\Theta > 68^{\circ}, n_{ant} > =5, ...$

Reconstructing the Muon number

Reconstructing the Muon number

Measurement of muon number

- Not performing likelihood power-law fit, using simplified analysis instead:
 - Def. mean muon number as $\langle R_{\mu} \rangle [E] = \langle R_{\mu} / (E / 10 \text{ EeV}) \rangle$
 - Fluktuation: $\sigma^2 \simeq V s_E^2 s_\mu^2$
 - $V = Var(R_{\mu} / (E / 10 \text{ EeV})) / \langle R_{\mu} / (E / 10 \text{ EeV}) \rangle$
 - Determine uncertainty on mean & std*
 + Gaussian error propagation

*Relative uncertainty on std:

$$\sigma_{K_nS}/\sigma = \hat{\sigma}_{K_nS}/(K_nS) = \frac{K_n\sqrt{V_n}}{\sqrt{n-1}}$$

$$\approx \frac{1}{\sqrt{2(n-1)}} \text{ for large } n.$$
Ahn, Sangtae & Fessler, Jeffrey. (2003)
Felix Schlüter - felix.schlueter@kit.edu

Simulation library

- 7972 p, He, N, Fe showers
 - p~ sin(θ) ^ 2 from 65 85°
 - p_E ~ lgE from 18.4 to 20.1
- Simulated radio signals for stations within r_{max}(θ)
- Malargüe October atmosphere
 - density profile & refractivity
- QGSJETII-04 / URQMD
- Also 8000 showers with Sibyll

Potential effects on the energy resolution

- If antenna-to-antenna variation (on amplitude) of 5% is underestimated
 - Effects on analog gain will be easy to control and well below 5%
 - Data from AERA indicates 5% (F. Canfora, next slide)
 - Effects on directional response of antenna pattern under investigation
 - Affected by ambient conditions (due to reflection)
- If preliminary calibration is overestimating sensitivity of antennas
- If strong effects from ambient conditions which are not yet considered or monitoring, of those considered, to inaccurate
- If added noise is not representative
 - Will vary within the whole array
 - EA site (used here) is more radio quite than (loud) AERA site

Antenna-to-antenna variation for AERA Butterfly antennas

- After galactic calibration
- $c_i = rac{1}{n}\sum_{j=
 u_1}^{
 u_n} rac{A(
 u_i)}{\overline{A}_{
 u_i}}$, i: frequency bin
 - c_i: spread of amplitude(v) in single antenna over all antennas within 1 periodic trigger event
 - Average over polarization
- Calculate RMS(c_i) for each event (100s trigger)
- Use mean of RMS as error est.

Arrival direction reconstruction

RD: Spherical fit (point sources, spherical expansion, changing radius)

Aperture calculation

GAP2020-08

Aperture calculation

GAP2020-08

- Projection still limits aperture
- "effective" area increases
 - By how much
- Trade off between aperture and reconstruction quality

Aperture calculation

Back-of-the-envelope calculation:

- Imagine we can reconstruct a radio shower at 85 deg if core is not further away than 1 (1.8) km (in shower plane) from closest station ~ 11 (20) km in ground plane
 - Assuming Auger is a perfect circle: Increase area from 3000 km2 to ~ 5500 (8000) km2
- Issue: will SD trigger (and at which energies?) and how is the reconstruction quality
 - Only full MC can give us some serious answer
 - Worth it?

Uncertainties

Sources of uncertainties

- f_{corr}(ρ) propargated from
 d_{max} (from fit)
- S_{rad} also includes uncertainty in the geomagnetic angle
- Uncertainty on arrival direction is underestimated
- What might cause underestimation?
 - uncertainty model for station signal
 - error estimation from fit

