

$b \rightarrow c$ transitions in and beyond the SM

 $b \rightarrow c$ transitions...

- ...are an example of flavour-changing transitions
- ... proceed in the SM via the weak interaction
 - access to a fundamental SM parameter, V_{cb}
- ... dominate lifetimes of singly-heavy groundstate B hadrons
- ... exhibit important hierarchies:

Tensions in $b \to c \tau \nu$, $b \to c \ell \nu$ and $B_{d,s} \to D_{d,s}^{(*)}(\pi,K)$

Importance of (semi-)leptonic hadron decays

In the Standard Model:

- Tree-level, $\sim |V_{ij}|^2 G_F^2 \, {\rm FF}^2$
- Determination of $|V_{ij}|$ (6(+1)/9)
- Lepton-flavour universal W couplings!

Beyond the Standard Model:

- Leptonic decays $\sim m_I^2$
 - \blacktriangleright large relative NP influence possible (e.g. H^{\pm})
- NP in semi-leptonic decays small/moderate
 - ▶ Need to understand the SM very precisely!

Key advantages:

- Large rates
- Minimal hadronic input ⇒ systematically improvable
- Differential distributions ⇒ large set of observables

Puzzling V_{cb} results

The V_{cb} puzzle has been around for 20+ years...

- ullet $\sim 3\sigma$ between exclusive (mostly $B o D^*\ell
 u$) and inclusive V_{cb}
- Inclusive determination: includes $\mathcal{O}(1/m_b^3, \alpha_s/m_b^2, \alpha_s^3)$
 - Excellent theoretical control, $|V_{cb}| = (42.2 \pm 0.5)10^{-3}$ [Bordone+'21,Fael+'20,'21]
- Exclusive determinations: $B \to D^{(*)} \ell \nu$, using CLN (\to later)

Lepton-non-Universality in $b \to c \tau \nu$

$$R(X) \equiv \frac{{\rm Br}(B \to X \tau \nu)}{{\rm Br}(B \to X \ell \nu)} \,, \quad \hat{R}(X) \equiv \frac{R(X)}{R(X)|_{\rm SM}} \,$$

contours: 68% CL filled: 95(68)% CL

R(D^(*)): BaBar, Belle, LHCb
 ⇒ average ~ 3 − 4σ from SM

More flavour $b \to c \tau \nu$ observables:

- au-polarization (au au had) [1608.06391]
- $B_c o J/\psi au
 u$ [1711.05623] : huge
- Differential rates from Belle, BaBar
- Total width of B_c
- $b \to X_c \tau \nu$ by LEP
- D* polarization (Belle)

Note: only 1 result $\geq 3\sigma$ from SM

Form Factors (FFs) parametrize fundamental mismatch:

Experiment with hadrons

$$\left\langle D_q^{(*)}(p')|\bar{c}\gamma^{\mu}b|\bar{B}_q(p)\right\rangle = (p+p')^{\mu}f_+^q(q^2) + (p-p')^{\mu}f_-^q(q^2), \ q^2 = (p-p')^2$$

Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P- and T-symmetry of QCD

 $f_{\pm}(q^2)$: real, scalar functions of one kinematic variable

How to obtain these functions?

- Calculable w/ non-perturbative methods (Lattice, LCSR,...) Precision?
- ▶ Measurable e.g. in semileptonic transitions Normalization? Suppressed FFs? NP?

Form Factors (FFs) parametrize fundamental mismatch:

Experiment with hadrons

$$\left\langle D_q^{(*)}(p')|\bar{c}\gamma^{\mu}b|\bar{B}_q(p)\right\rangle = (p+p')^{\mu}f_+^q(q^2) + (p-p')^{\mu}f_-^q(q^2),\ q^2 = (p-p')^2$$

Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P- and T-symmetry of QCD $f_{+}(q^2)$: real, scalar functions of one kinematic variable

e functions?

n-perturbative methods (Lattice, LCSR,...)

in semileptonic transitions

Suppressed FFs? NP?

Form Factors (FFs) parametrize fundamental mismatch:

Experiment with hadrons

$$\left\langle D_q^{(*)}(p')|\bar{c}\gamma^{\mu}b|\bar{B}_q(p)\right\rangle = (p+p')^{\mu}f_+^q(q^2) + (p-p')^{\mu}f_-^q(q^2),\ q^2 = (p-p')^2$$

Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P- and T-symmetry of QCD $f_{+}(q^2)$: real, scalar functions of one kinematic variable

e fur n-pe in se

methods (Lattice, LCSR,...)

transitions

Form Factors (FFs) parametrize fundamental mismatch:

Theory (e.g. SM) for partons (quarks) vs.

Experiment with hadrons

$$\left\langle D_q^{(*)}(p')|\bar{c}\gamma^{\mu}b|\bar{B}_q(p)\right\rangle = (p+p')^{\mu}f_+^q(q^2) + (p-p')^{\mu}f_-^q(q^2),\ q^2 = (p-p')^2$$

Most general matrix element parametrization, given symmetries: Lorentz symmetry plus P- and T-symmetry of QCD $f_{+}(q^2)$: real, scalar functions of one kinematic variable

q^2 dependence

- q^2 range can be large, e.g. $q^2 \in [0, 12] \text{ GeV}^2$ in $B \to D$
- Calculations give usually one or few points
- \blacktriangleright Knowledge of functional dependence on q^2 cruical
- This is where discussions start...

Give as much information as possible independent of this choice!

In the following: discuss BGL and HQE (\rightarrow CLN) parametrizations q^2 dependence usually rewritten via conformal transformation:

$$z\left(t=q^{2},t_{0}
ight)=rac{\sqrt{t_{+}-t}-\sqrt{t_{+}-t_{0}}}{\sqrt{t_{+}-t}+\sqrt{t_{+}-t_{0}}}$$

$$t_{+} = (M_{B_q} + M_{D_q^{(*)}})^2$$
: pair-production threshold $t_0 < t_{+}$: free parameter for which $z(t_0, t_0) = 0$

Usually $|z| \ll 1$, e.g. $|z| \le 0.06$ for semileptonic $B \to D$ decays

Good expansion parameter

The BGL parametrization [Boyd/Grinstein/Lebed, 90's]

FFs are parametrized by a few coefficients the following way:

- 1. Consider analytical structure, make poles and cuts explicit
- 2. Without poles or cuts, the rest can be Taylor-expanded in z
- 3. Apply QCD properties (unitarity, crossing symmetry)

 ▶ dispersion relation
- 4. Calculate partonic part perturbatively (+condensates)

Result:

$$F(t) = \frac{1}{P(t)\phi(t)} \sum_{n=0}^{\infty} a_n [z(t, t_0)]^n.$$

- a_n : real coefficients, the only unknowns
- P(t): Blaschke factor(s), information on poles below t_+
- $\phi(t)$: Outer function, chosen such that $\sum_{n=0}^{\infty} a_n^2 \leq 1$
- Series in z with bounded coefficients (each $|a_n| < 1$)!
- Uncertainty related to truncation is calculable!

$V_{cb} + R(D^*) \text{ w/ data} + \text{lattice} + \text{unitarity} \text{ [Gambino/MJ/Schacht'19]}$

Recent untagged analysis by Belle with 4 1D distributions [1809.03290]

lacktriangle "Tension with the (V_{cb}) value from the inclusive approach remains"

Analysis of 2017+2018 Belle data with BGL form factors:

- Datasets roughly compatible
- d'Agostini bias + syst. important
- All FFs to z^2 to include uncertainties
 - ▶ 50% increased uncertainties

 $|V_{cb}^{D^*}| = 39.6_{-1.0}^{+1.1} \times 10^{-3}$ $R(D^*) = 0.254_{-0.006}^{+0.007}$

• 2018: no parametrization dependence

HQE parametrization

HQE parametrization uses additional information compared to BGL

- ➡ Heavy-Quark Expansion (HQE)
 - $m_{b,c} \to \infty$: all $B \to D^{(*)}$ FFs given by 1 Isgur-Wise function
 - Systematic expansion in $1/m_{b,c}$ and α_s
 - Higher orders in $1/m_{b,c}$: FFs remain related
 - Parameter reduction, necessary for NP analyses!

CLN parametrization [Caprini+'97]:

HQE to order $1/m_{b,c}$, α_s plus (approx.) constraints from unitarity [Bernlochner/Ligeti/Papucci/Robinson'17]: identical approach, updated and consistent treatment of correlations

Problem: Contradicts Lattice QCD (both in $B \to D$ and $B \to D^*$) Dealt with by varying calculable ($(01/m_{b,c})$) parameters, e.g. $h_{A_1}(1)$

- ▶ Not a systematic expansion in $1/m_{b,c}$ anymore!
- ▶ Related uncertainty remains $\mathcal{O}[\Lambda^2/(2m_c)^2] \sim 5\%$, insufficient

Solution: Include systematically $1/m_c^2$ corrections [Bordone/MJ/vDyk'19,Bordone/Gubernari/MJ/vDyk'20] ,using [Falk/Neubert'92]

Theory determination of $b \rightarrow c$ Form Factors

SM: BGL fit to data + FF normalization $\rightarrow |V_{cb}|$

NP: can affect the q^2 -dependence, introduces additional FFs

To determine general NP, FF shapes needed from theory

[MJ/Straub'18,Bordone/MJ/vDyk'19] used all available theory input:

- Unitarity bounds (using results from [CLN, BGL])
 - \blacktriangleright non-trivial 1/m vs. z expansions
- LQCD for $f_{+,0}(q^2)$ (B o D), $h_{A_1}(q^2_{\max})$ $(B o D^*)$ [HPQCD'15,'17,Fermilab/MILC'14,'15]
- LCSR for all FFs (mod f_T) [Gubernari/Kokulu/vDyk'18]
- QCDSR results for 1/m IW functions [Ligeti+'92'93]
- HQET expansion to $\mathcal{O}(\alpha_s, 1/m_b, 1/m_c^2)$

FFs under control; $R(D^*) = 0.247(6)$ [Bordone/MJ/vDyk'19]

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

- Fits 3/2/1 and 2/1/0 are theory-only fits(!)
- k/I/m denotes orders in z at $\mathcal{O}(1, 1/m_c, 1/m_c^2)$
- ullet w-distribution yields information on FF shape $o V_{cb}$
- Angular distributions more strongly constrained by theory, only
- lacktriangle Predicted shapes perfectly confirmed by $B o D^{(*)} \ell
 u$ data
- \triangleright V_{cb} from Belle'17 compatible between HQE and BGL!

Robustness of the HQE expansion up to $1/m_c^2$ [Bordone/MJ/vDyk'19]

Testing FFs by comparing to data and fits in BGL parametrization:

- B → D* BGL coefficient ratios from:
 - 1. Data (Belle'17+'18) + weak unitarity (yellow)
 - 2. HQE theory fit 2/1/0 (red)
 - 3. HQE theory fit 3/2/1 (blue)
- Again compatibility of theory with data
- ▶2/1/0 underestimates the uncertainties massively
- ▶ For b_i, c_i (→ f, \mathcal{F}_1) data and theory complementary

Including $ar{B}_s o D_s^{(*)}$ Form Factors [Bordone/Gubernari/MJ/vDyk'20]

Dispersion relation *sums* over hadronic intermediate states

- ▶ Includes $B_s D_s^{(*)}$, included via SU(3) + conservative breaking
- lacktriangle Explicit treatment can improve also $ar{B} o D^{(*)} \ell
 u$

Experimental progress in $\bar{B}_s \to D_s^{(*)} \ell \nu$:

2 new LHCb measurements [2001.03225, 2003.08453]

Improved theory determinations required, especially for NP

We extend our $1/m_c^2$ analysis by including:

- Available lattice data: $(2\ ar{B}_s o D_s\ \mathsf{FFs}\ (q^2\ \mathsf{dependent}),\ 1\ ar{B}_s o D^*\ \mathsf{FF}\ (\mathsf{only}\ q^2_{\mathrm{max}}))$
- Adaptation of existing QCDSR results [Ligeti/Neubert/Nir'93'94], including SU(3) breaking
- New LCSR results extending [Gubernari+'18] to B_s , including SU(3) breaking
- \blacktriangleright Fully correlated fit to $\bar{B} \to D^{(*)}, \bar{B}_s \to D_s^{(*)}$ FFs

Including $\bar{B}_s \to D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_s \to D_s^{(*)}$ FFs

Including $\bar{B}_s \to D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $\bar{B}_s \to D_s^{(*)}$ FFs

Including $\bar{B}_s \to D_s^{(*)}$ Form Factors, Results

We observe the following:

- Theory constraints fitted consistently in an HQE framework
- $\mathcal{O}(1/m_c^2)$ power corrections have $\mathcal{O}(1)$ coefficients
- No indication of sizable SU(3) breaking
- Slight influence of strengthened unitarity bounds
- Improved determination of $ar{B}_s o D_s^{(*)}$ FFs

Theory-only predictions:

$$R(D) = 0.299(3)$$
 $R(D^*) = 0.247(5)$

$$R(D_s) = 0.297(3)$$
 $R(D_s^*) = 0.245(8)$

Theory+Experiment (Belle'17) predictions:

$$R(D) = 0.298(3)$$
 $R(D^*) = 0.250(3)$

$$R(D_s) = 0.297(3)$$
 $R(D_s^*) = 0.247(8)$

 $R_1(w)$: FNAL slope surprising, compatible at $1-2\sigma$

 $R_1(w)$: FNAL slope surprising, compatible at $1-2\sigma$

 $R_1(w)$: FNAL slope surprising, compatible at $1-2\sigma$

 $R_1(w)$: FNAL slope surprising, compatible at $1-2\sigma$

 $R_2(w=1)$: Discrepancy FNAL (1.12 \pm 0.06) vs. (HQE fit, experiment)! HQE@1/ m_c^2 : 0.78 $^{+0.10}_{-0.06}$, BGL: 0.81 \pm 0.11, HFLAV: 0.852 \pm 0.018

 $R_1(w)$: FNAL slope surprising, compatible at $1-2\sigma$

 $R_2(w=1)$: Discrepancy FNAL (1.12 \pm 0.06) vs. (HQE fit, experiment)! HQE@1/ m_c^2 : 0.78 $^{+0.10}_{-0.06}$, BGL: 0.81 \pm 0.11, HFLAV: 0.852 \pm 0.018

 $R_1(w)$: FNAL slope surprising, compatible at $1-2\sigma$

 $R_2(w=1)$: Discrepancy FNAL (1.12 \pm 0.06) vs. (HQE fit, experiment)! HQE@1/ m_c^2 : 0.78 $^{+0.10}_{-0.06}$, BGL: 0.81 \pm 0.11, HFLAV: 0.852 \pm 0.018

Flavour universality in $B \to D^*(e, \mu)\nu$

[Bobeth/Bordone/Gubernari/MJ/vDyk'21]

So far: Belle'18 data used in SM fits, flavour-averaged

However: Bins 40 × 40 covariances given separately for $\ell = e, \mu$ Belle'18: $R_{e/\mu}(D^*) = 1.01 \pm 0.01 \pm 0.03$

- What can we learn about flavour-non-universality? \rightarrow 2 issues:
 - 1. $e \mu$ correlations not given \rightarrow constructable from Belle'18
- 2. 3 bins linearly dependent, but covariances not singular Two-step analysis:
 - Extract 2 × 4 angular observables for 2 × 30 angular bins
 Model-independent description including NP!
 - 2. Compare with SM predictions, using FFs@1/ m_c^2 [Bordone+'19]

Conclusions

Form factors essential ingredients in precision-flavour physics!

- q^2 dependence critical \rightarrow need FF-independent data
- ▶ Inclusion of higher-order (theory) uncertainties important
- BGL: model-independent, truncation uncertainty limited
- $lacktriangleright B o D^*$: Reduced V_{cb} puzzle, somewhat lower $R(D^*)$ prediction
- ullet Theory determinations for NP required o HQE to relate FFs
- $\mathcal{O}(1/m_c)$ not good enough for precision analyses
- First analysis at $1/m_c^2$ provides all $B \to D^{(*)}$ FFs
- V_{cb} consistent w/ BGL
- First LQCD analyses in $B \to D^*$ and $B_s \to D_s^*$ @ finite q^2
- Tension with experiment as well as other theory inputs
- LFU-violation in $b \to c\ell\nu$ @ $\sim 4\sigma!$
- ► Experimental issues? NP?

Central lesson: experiment and theory need to work closely together!

Overview over predictions for $R(D^*)$

Lattice $B \to D^*$: $h_{A_1}(w=1)$ [FNAL/MILC'14,HPQCD'17]

Other lattice: $f_{+,0}^{B\to D}(q^2)$ [MILC,HPQCD'15]

QCDSR: [Ligeti/Neubert/Nir'93,'94], LCSR: [Gubernari/Kokulu/vDyk'18]

Consistent SM predictions! Improvement expected from lattice FNAL/MILC('21) discussed in the following.

A puzzle in non-leptonic $b \rightarrow c$ transitions

[Bordone/Gubernari/Huber/MJ/vDyk'20]

FFs also of central importance in non-leptonic decays:

- Complicated in general, $B o M_1 M_2$ dynamics
- Simplest cases: $\bar{B}_d \to D_d^{(*)} \bar{K}$ and $\bar{B}_s \to D_s^{(*)} \pi$ (5 diff. quarks)
 - lacktriangle Colour-allowed tree, $1/m_b^0@\mathcal{O}(lpha_s^2)$ [Huber+'16] , factorizes at $1/m_b$
 - lacktriangle Amplitudes dominantly $\sim ar{B}_q
 ightarrow D_q^{(*)}$ FFs
 - Used to determine f_s/f_d at hadron colliders [Fleischer+'11]

Updated and extended calculation: tension of 4.4σ w.r.t. exp.!

- Large effect, $\sim -30\%$ for BRs
- Ratios of BRs ok
- QCDf uncertainty $\mathcal{O}(1/m_b^2, \alpha_s^3)$
- Data consistent (too few abs. BRs)
- NP? $\Delta_P \sim \Delta_V \sim -20\%$ possible
- ▶We will learn something important!

Preliminary lattice calculations

Preliminary lattice calculations

 $R_2(w)$: Discrepancy FNAL (1.12 \pm 0.06) vs. (HQE fit, experiment)! HQE@1/ m_c^2 : 0.78 $^{+0.10}_{-0.06}$, BGL: 0.81 \pm 0.11, HFLAV: 0.852 \pm 0.018

Comments regarding systematics and fitting [MJ/Straub'18]

Present (and future!) precision renders small effects important:

- Form factor parametrization
- d'Agostini effect: assuming systematic uncertainties ~ (exp. cv) introduces bias
- e.g. 1-2 σ shift in $|V_{cb}|$ in Belle 2010 binned data
- Rounding in a fit with strong correlations and many bins:
 - lacktriangledown 1σ between fit to Belle 2017 data from paper vs. HEPdata
- BR measurements and isospin violation [MJ 1510.03423] : Normalization depends on $\Upsilon \to B^+B^-$ vs. $B^0\bar{B}^0$ Taken into account, but simple HFLAV average problematic:
 - Potential large isospin violation in $\Upsilon \to BB$ [Atwood/Marciano'90]
 - Measurements in $r_{+0}^{
 m HFAG}$ assume isospin in exclusive decays
 - This is one thing we want to test!
 - Avoiding this assumption yields $r_{+0} = 1.035 \pm 0.038$ (potentially subject to change, in contact with Belle members)
 - Relevant for all BR measurements at the %-level

BR measurements and isospin violation [MJ 1510.03423]

Detail due to high precision and small NP

▶ Relevant for $\sigma_{\rm BR}/{\rm BR} \sim \mathcal{O}(\%)$

Branching ratio measurements require normalization...

- B factories: depends on $\Upsilon \to B^+B^-$ vs. $B^0\bar{B}^0$
- LHCb: normalization mode, usually obtained from B factories

Assumptions entering this normalization:

- PDG: assumes $r_{+0} \equiv \Gamma(\Upsilon \to B^+ B^-)/\Gamma(\Upsilon \to B^0 \bar{B}^0) \equiv 1$
- LHCb: assumes $f_u \equiv f_d$, uses $r_{+0}^{\mathrm{HFAG}} = 1.058 \pm 0.024$

Both approaches problematic:

- Potential large isospin violation in $\Upsilon o BB$ [Atwood/Marciano'90]
- Measurements in $r_{+0}^{\rm HFAG}$ assume isospin in exclusive decays
 - This is one thing we want to test!
- Avoiding this assumption yields $r_{+0} = 1.035 \pm 0.038$ (potentially subject to change, in contact with Belle members)

Generalities regarding this anomaly

- $\sim 15\%$ of a SM tree decay $\sim V_{cb}$: This is a huge effect!
 - Need contribution of $\sim 5-10\%$ (w/ interference) or $\gtrsim 40\%$ (w/o interference) of SM

What do we do about this?

- Check the SM prediction!
 - $[\rightarrow \mathsf{Bigi+}, \mathsf{Bordone+}, \mathsf{Gambino+}, \mathsf{Grinstein+}, \mathsf{Bernlochner+}]$
 - $\blacktriangleright \delta R(D^*)$ larger, anomaly remains

- Related indirect bounds (partly model-dependent)
 - \blacktriangleright High p_T searches, lepton decays, LFV, EDMs, ...
- Analyze flavour structure of potential NP contributions
 - **\rightharpoonup** quark flavour structure, e.g. $b \rightarrow u$
 - \blacktriangleright lepton flavour structure, e.g. $b \to c\ell (=e,\mu)\nu$

