PAUL SCHERRER INSTITUT

Andreas Crivellin

PSI & UZH

Discovering Lepton Flavour Universality Violating New Physics

Karlsruhe, 16.11.2021

Work supported by FNSNF

Outline

- Introduction
- Status of the Flavour anomalies
 - b→sµµ
 - b→ст∨
 - $-a_{\mu}$
 - $-\tau \rightarrow \mu \nu \nu$
 - Cabibbo Angle Anomaly
 - Non-resonant di-leptons
- Explanations of the Flavour anomalies
- Common Explanations
 - Leptoquarks
 - Vector like fermions

Conclusions

Introduction

Physics Beyond the Standard Model

- Dark Matter existence established at cosmological scales
 - New weakly interacting particles
- Neutrinos not exactly massless
 - Right-handed (sterile) neutrinos
- Matter anti-matter asymmetry

- SM
- Dark Matter
- Dark Energy
- Additional CP violating interactions

The SM must be extended! What is the underlying fundamental theory?

Discovering New Physics

- Cosmic Frontier Energy Cosmic rays and neutrinos **Frontier** – Dark Matter – Dark Energy Energy Frontier NP -LHCCosmic Intensity - Future colliders **Frontier Frontier** Intensity Frontier – Flavour
 - Neutrino-less double-β decay
 - Test of fundamental symmetries
 - Proton decay

Finding New Physics with Flavour

 At colliders one produces many (up to 10¹⁴) heavy quarks or leptons and measures their decays into light flavours

Flavour observables can be sensitive to higher energy scales than collider searches

Overview on the Flavour anomalies

$b \rightarrow s\mu^+\mu^-$ Processes

- Flavour Changing Neutral Current (FCNC)
- In the SM it is suppressed by
 - > The CKM elements $V_{cb} \approx 0.04$
 - Electroweak scale
 - Loop-factor
- Wilson coefficients precisely known Bobeth et al. PRD, 2013

Suppressed in the SM and very sensitive to NP

$B_s \rightarrow \mu \mu$ and $B_s \rightarrow \phi \mu \mu$

 B_s→µµ theoretically clean but chirality suppressed and therefore statistically limited

B_s→φµµ has a higher
 Br, but knowledge of
 the form-factor needed

Br's ≈ 20% below SM expectations

The P₅' Anomaly

- P₅ angular S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, JHEP 2013 observables in $B \rightarrow K^* \mu \mu$
- Constructed in P LHCb data ATLAS data such a way that the Belle data CMS data 0.5SM from DHMV form factor SM from ASZB dependence is minimized -0.5 Confirmed by latest LHCb analysis for
 - 15 5 10 the charged mode q^{2} [GeV²/ c^{4}]

$>3\sigma$ deviation from the SM prediction

$$R(K^*) = B \rightarrow K^* \mu^+ \mu^- / B \rightarrow K^* e^+ e^-$$

• Theoretically absolutely clean observable (in the SM)

Lepton Flavour Violation in B decays?

$R(K) = B \rightarrow K \mu^{+} \mu^{-} / B \rightarrow K e^{+} e^{-}$

• Theoretically absolutely clean observable (in the SM)

Lepton Flavour Violation in B decays?

$R(K) = B \rightarrow K \mu^{+} \mu^{-} / B \rightarrow K e^{+} e^{-}$

• Theoretically absolutely clean observable (in the SM)

Lepton Flavour Violation in B decays?

Global Fit to $b \rightarrow s\mu^+\mu^-$ Data

- Perform global model independent fit to include all observables (≈150)
- Several NP hypothesis give a good fit to data significantly preferred over the SM hypothesis

$$O_{9} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \ell$$
$$O_{10} = \overline{s} \gamma^{\mu} P_{L} b \overline{\ell} \gamma_{\mu} \gamma^{5} \ell$$

Fit is >7 σ better than the SM

b→cτv Transitions

- $B \rightarrow D\tau v, B \rightarrow D^*\tau v, \Lambda_b \rightarrow \Lambda_c \tau v$
- Tree-level decays in the SM
- Form factors needed
- With light leptons (μ, e) used to determine the CKM elements
- CKM fit works very well, i.e. tree-level in agreement with ΔF=2 processes

Largest B branching ratios, used to determine the CKM elements, usually assumed to be free of NP

b→cτν Measurements

All measurements above the SM prediction O(10%) constructive effect at 3 σ preferred

b→cτν Measurements

Supports R(D) & R(D*)

Muon Anomalous Magnetic Moment

Theory prediction challenging (hadronic effects)

 $\Delta a_{\mu} = (251 \pm 49) \times 10^{-11}$ T. Aoyama et al., arXiv:2006.04822

- Need NP of the order of the SM EW contribution
- Chiral enhancement necessary for heavy NP
- Soon more experimental results from Fermilab
- Vanishes for $m_{\mu} \rightarrow 0 \implies measure of LFUV$

4.2σ deviation from the SM prediction

τ→μνν

$\approx 2\sigma$ hint for LFUV in tau decays

Cabibbo Angle Anomaly

- V_{ud} from super-allowed beta decays
- V_{us} from
 Kaon and
 tau decays

 τ decays

 $K \rightarrow \pi \ell \nu$

 $0^+ - 0^+$

 $K \rightarrow \mu \nu / \pi \rightarrow \mu \nu$

SM fit 68% CL

$$\left|V_{ud}^{2}\right| + \left|V_{us}^{2}\right| + \left|V_{ub}^{2}\right| = 0.9985 \pm 0.0005 (PDG)$$

CMS, SGPR: radiative corrections

CMS

$\approx 3\sigma$ hint for LFUV in the charged current

CAA and LFUV

- Assume modified Wev couplings $L = i g_2 / \sqrt{2} v_f \gamma^{\mu} P_L \ell_i W_{\mu} \left(\delta_{fi} + \varepsilon_{fi} \right)$
- V_{ud} from beta decays depends on Fermi constant $1/\tau_{\beta} \sim \left|V_{ud}\left(1+\varepsilon_{ee}\right)\right|^2 G_F^2$
- Fermi constant determined from

 $\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} (1 + \Delta q) \left(1 + \varepsilon_{ee} + \varepsilon_{\mu\mu}\right)^2$

• Dependence on \mathcal{E}_{ee} cancels

$$\frac{V_{us}^{K_{\mu 2}}}{V_{us}^{\beta}} \equiv \frac{V_{us}^{K_{\mu 2}}}{\sqrt{1 - (V_{ud}^{\beta})^2 - |V_{ub}|^2}} \approx 1 - \left(\frac{V_{ud}}{V_{us}}\right)^2 \varepsilon_{\mu\mu}$$

The CAA can be interpreted as a sign of LFUV

Non-Resonant Di-Leptons

- Excess in di-electrons at m_{ee}>1800GeV
- Observed: 44 events
- Expected 29.2 ± 3.6 events

- Also ATLAS (2006.12946) and HERA (1902.03048) observe slightly more electrons than expected.
- No excess in muon data

≈3σ hint for LFUV

ΔA_{FB} in b $\rightarrow c\mu v$

•
$$\Delta A_{FB} = A_{FB} (b \rightarrow c \mu \nu) - A_{FB} (b \rightarrow c e \nu)$$

- 4σ deviation found by 2104.02094 based on BELLE data 1809.03290
- Scalar and/or tensor operators required for an angular asymmetry
- g-2 and b→sµµ motivate new physics related to muons

Hint for scalar/tensor NP in $b \rightarrow c\mu v$

Flavour Anomalies

New Physics Explanations of the Anomalies

- Charged scalars: Problems with distributions

 A. Celis, M. Jung, X. Q. Li, A. Pich, PLB 2017
 R. Alonso, B. Grinstein, J. Martin Camalich, PRL 2017
- W': Strong constraints from direct LHC searches D. Buttazzo, A. Greljo, G. Isidori, D. Marzocca, JHEP 2017
- Leptoquark: Strong signals in qq→ττ searches CMS, 1809.05558; ATLAS, 1902.08103

Explanation difficult but possible with Leptoquarks

$b \rightarrow s\mu^+\mu^- explanations$

- Z' W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin 1403.1269,
 - Necessary effects in B_s mixing
 - Collider constraints
- Loop contributions

- Scalars and vector-like fermions
 B. Gripaios, M. Nardecchia, S. A. Renner, JHEP 2016
- 2HDM A.C., D. Müller and C. Wiegand, 1903.10440
- R₂ Leptoquark D. Bečirević and O. Sumensari, 1704.05835
- Z' coupling to tops J. Kamenik, Y. Soreq and J. Zupan, 1704.06005
- Leptoquarks
 G. Hiller and M. Schmaltz, 1408.1627
 D. Bečirević, S. Fajfer and N. Košnik,1503.09024,

Small effect needed; many possibilities

a_{μ} explanations

- MSSM
 - tan(ß) enhanced slepton loops
- Scalars
 - Light scalars with enhanced muon couplings
- Z'
 - Very light with $\tau\mu$ couplings (m_{τ} enhancement)
- New scalars and fermions
 - κ/Υ_μ
- Leptoquarks
 - m_t enhanced effects

Chiral enhancement or very light particles

Leptoquarks in a_{μ}

• Chirally enhanced effects via top-loops

• m_t/m_μ enhanced effect $h \rightarrow \mu\mu$ • m_t^2/m_Z^2 enhanced effect in $Z \rightarrow \mu\mu$

Correlations with $h \rightarrow \mu\mu$ and $Z \rightarrow \mu\mu$

$a_{\mu} vs h \rightarrow \mu \mu$

- Chirally enhanced effects via top-loops
- Same coupling structure \rightarrow direct correlation

A.C., D. Mueller, F. Saturnino, 2008.02643

 $h \rightarrow \mu \mu$ at future colliders

 a_{μ} vs Z $\rightarrow \mu\mu$

Chirally enhanced effects via top-loops

E. Leskow, A.C., G. D'Ambrosio, D. Müller 1612.06858 A.C, C. Greub, D. Müller, F.Saturnino, 2010.06593

$Z \rightarrow \mu \mu$ at future colliders

Cabibbo Angle Anomaly and EW Fit

$>5\sigma$ improvement over SM hypothesis with VLLs

τ→μνν

A.C., F. Kirk, C. Manzari, L. Panizzi, arXiv:2012.09845

4σ hint for modified neutrino couplings

Non-Resonant Di-Leptons

Constructive heavy NP in electrons

ΔA_{FB}

- Right-handed vector operators LFU
- Good fit requires the tensor operator

Hint for scalar leptoquarks

scalar LQ

Simultaneous Explanations

Vector Leptoquark SU(2) Singlet

- Left-handed effect in $b \rightarrow s \mu \mu$
- Left-handed vector current in R(D) and R(D*)
- No effect in $b \rightarrow svv$
- No proton decay
- Contained within the Pati-Salam model
- Massive vector bosons
 - Non-renormalizable without Higgs mechanism
 - Pati Salam not possible at the Tev scale because of $K_L \rightarrow \mu e$ and $K \rightarrow \pi \mu e$

Good solution, but difficult UV completion

Perfect agreement with data

Pati-Salam LQ can explain the flavour anomalies

Vector Triplet Explanation of CAA and $b \rightarrow s \mu \mu$

W' Explanation of CAA

- W' effects in LFU and EW observables
- Z' effects in LHC di-jet and di-lepton tail searches

R(V_{us}) can be explained by a left-handed W'

Vector Triplet in $R(V_{us}) \& b \rightarrow sll$

- Region preferred by EW fit overlaps with b→sll region
- Correlations
 between
 e.g. π→μν/π→ev
 and R(K^(*)) are
 predicted
- Global fit significantly improved

Common explanation possible

CAA, $\tau \rightarrow \mu \nu \nu$, Z \rightarrow bb and b \rightarrow s $\mu \mu$

Model

 $q_L d_R u_R H \ell_L e_R |Q_L Q_R D_L D_R \phi^+|$ S $SU(3)_c$ 3 3 1 13 1 3 3 3 3 1 $1 \quad 1 \quad 2 \quad 2 \quad 1 \quad 2$ $SU(2)_L$ $\mathbf{2}$ $2 \quad 1$ 1 1 1 $\frac{-5}{6}$ $\frac{-1}{3}$ $\frac{-1}{3}$ 1 0 $0 \quad 0 \quad (0, 1, -1) \quad 0 \quad 1 \quad 1$ 0 U(1)'0 Q_L Q_L b_R, s_R b_R, s_R b_L, s_L b_L, s_L vv Q_R Q_L Q_R

Tree effect in Zbb and loop in Z'sb

Model for b \rightarrow sll, CAA, Z \rightarrow bb and $\tau \rightarrow \mu\nu\nu$

Simple model provides combined explanation

CAA and Non-Resonant Di-Leptons

4.5 σ better than SM, prediction for R(π)

Conclusions

Outlook: Physics at Future Colliders

- Flavour Anomalies require NP at the TeV scale
 Direct Searches at HL-LHC, HE-LHC, FCC-pp
- This new particles in general also affect EW precision observables

Z decays at CLIC and FCC-ee

 Flavour is directly linked to the Higgs boson
 CLIC, FCC

Flavour Anomalies (if confirmed) strengthen the physics case for future colliders significantly

LHC bounds and future prospects

FCC-hh reach six times higher

Andreas Crivellin

Implications for FCC-ee

Backup

Z' model with U(2) flavour

Common explanation possible

CP violation in Kaon decays: $\varepsilon'/ \varepsilon$

- ε: indirect CP violation in Kaon decays
 - K_L and K_S are not CP eigenstates due to mixing
- ε': direct CP violation in Kaon decays

$$\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)}, \qquad \eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}$$
$$\eta_{00} = \varepsilon - \frac{2\varepsilon'}{1 - \sqrt{\omega}} \simeq \varepsilon - 2\varepsilon', \qquad \eta_{+-} = \varepsilon + \frac{\varepsilon'}{1 + \omega/\sqrt{2}} \simeq \varepsilon + \varepsilon'$$

 $(\varepsilon'/\varepsilon)_{\rm SM} = (1.9 \pm 4.5) \times 10^{-4}$ $(\varepsilon'/\varepsilon)_{\rm exp} = (16.6 \pm 2.3) \times 10^{-4}$

Measurement $\approx 3\sigma$ above the SM prediction

Buras et al.

L. Hofer, D. Scherer, L. Vernazza, arXiv:1011.6319 [hep-ph]

• Longstanding B $\rightarrow \pi K$ Puzzle $\Delta A_{CP}^- \equiv A_{CP} \left(B^- \rightarrow \pi^0 K^- \right) - A_{CP} \left(\overline{B}^0 \rightarrow \pi^+ K^- \right)$ $\Delta A_{CP}^- \mid_{exp} = (12.4 \pm 2.1)\%$ $\Delta A_{CP}^- \mid_{SM} = (1.8^{+4.1}_{-3.2})\%$ • More observables like

Hadronic B decays

$$A_{\rm CP}[B_s \to K^+ K^-]_{\rm exp} = (-20.0 \pm 6.0 \pm 2.0)\%$$

$$A_{\rm CP}[B_s \to K^+ K^-]_{\rm SM} = (-5.9^{+26.6}_{-5.1})\%$$

$$Br[B_s \to \phi \rho^0]_{\rm exp} = (2.7 \pm 0.7 \pm 0.2 \pm 0.2) \times 10^{-7}$$

$$Br[B_s \to \phi \rho^0]_{\rm SM} = (5.3^{+1.8}_{-1.3}) \times 10^{-7}$$

CP and isospin violation needed

Similar picture in D decays

Global fit to data: 2-3σ

$\varepsilon'/ \varepsilon$ explanations

V. Cirigliano, et al. arXiv:1612.03914

• Z' (also for ΔA_{CP})

A. Buras, et al. arXiv:1507.08672 A. Buras and F. De Fazio, arXiv:1512.02869

• MSSM

T. Kitahara, U. Nierste, P. Tremper, arXiv:1604.07400 M. Endo, et al. arXiv:1608.01444 A. Crivellin, G. D'Ambrosio, T. Kitahara and U. Nierste, arXiv:1703.05786

QCD corrections to the Matching

- Perform matching
- Correct for 4-dimensional Fierz identities

Results

J. Aebischer, AC, C. Greub, 1811.08907

Slightly weaker LHC constraints

Correlations the neutron EDM with S1

Effect in B predicts measurable nEDM effect

 $R(D^{(*)})$, b \rightarrow svv with 2 Scalar LQs

PAUL SCHERRER INSTITUT

Model with new vector-like leptons

Hadronic Vacuum Polarization

New BMWc lattice QCD result

Up to 4σ tension in EW fit

$b \rightarrow c\tau v$ Global Fit

- Pure scalar-tensor explenations in tension with the B_c lifetime
- Pure left-handed vector, i.e. contribution^{-0.4} to the SM operator gives good fit

1905.08253

BR ($B_c \rightarrow \tau \overline{\vee}$) > 10 %

Global fit give up to 4σ preference for NP

0.2

0.0

-0.2

M. Blanke,

T. Kitahara,

M. Moscati,

U. Nierste, I. Nišandžić,

1905.08253

A.C.,

Scalar Leptoquarks

Two Scalar Leptoquarks AC, D. Mueller, T. Ota arxiv:1703.09226

- Φ_1 scalar leptoquark singlet with Y=-2/3
- Φ_3 scalar leptoquark triplet with Y=-2/3

$R(D^{(*)}), b \rightarrow sll and a_{\mu}$

4 benchmark points

AC, D. Mueller, F. Saturnino arxiv:1912.04224

	κ_{22}	κ_{32}	κ_{23}	κ_{33}	λ_{22}	λ_3	32	λ_{23}	λ_{33}	$\hat{\lambda}_{32}$	$\hat{\lambda}_{23}$
$\bullet p_1$	-0.019	-0.059	0.58	-0.11	-0.0082	-0.0	016 –	1.46	-0.064	-0.1	9 1.34
$\bullet p_2$	-0.017	-0.070	-1.23	0.066	0.0078	-0.0	055 1	1.36	0.052	-0.0	53 - 1.47
• p ₃	0.0080	0.081	1.18	-0.073	-0.0017	0.1	16 –	0.76	-0.068	0.02	3 1.23
$\bullet p_4$	-0.0032	-0.21	0.44	-0.20	0.014	-0.	.10 –	1.38	-0.068	-0.0	32 0.57
	$C_0^{\mu\mu} = -C_1^{\mu\mu}$	$L^{\mu\mu}$ $C^{\ell\ell}_{0}$	R(D)	$R(D^*)$	$B_s \to \gamma$	ττ	$\tau \to \mu \gamma$	δa_{μ}	$\delta a_{\mu} = \tilde{V}^e_{cb}/\tilde{V}^{\mu}_{cb}$ –		$Z \to \tau \mu$
	9	10 9	$R(D)_{\rm SM}$	$R(D^*)_{\rm SN}$	$M B_s \to \tau \tau$	SM	$\times 10^{8}$	$\times 10^{1}$	L X	10°	$\times 10^{10}$
$\bullet p_1$	-0.52	-0.21	1.15	1.10	59.88	3	4.35	207	2	91	0.117
$\bullet p_2$	-0.56	-0.28	1.14	1.10	99.76	;	0.766	199	4	48	2.38
● p ₃	-0.31	-0.31	1.14	1.09	112.5	5	3.62	255	1	7	0.129
$\bullet p_4$	-0.31	-0.31	1.13	1.11	112.5	5	0.734	230	9	34	45.6
	$C^{\tau\tau} = -AC$		$R^{K^{(*)}}_{\nu\bar{\nu}}$	$\Delta m_{B_s}^{\rm NP}$	$B \to K$	$\tau\mu$	$\tau \to \phi \mu$	$\tau \to \mu$	$ee \mid \Lambda_{33}^{LG} $	$^{2}(0) $	$\Delta^L_{33}(m_Z^2)$
	$O_{SL} = -4O$	$\Gamma L \cup VL$		$\overline{\Delta m_{B_s}^{\rm SM}}$	$\times 10^5$		$\times 10^{8}$	$\times 10^{12}$		10^{5}	$\Lambda_{\rm SM}^{L\ell} \times 10^{-5}$
• <i>p</i> ₁	0.023	0.040	2.33	0.1	0.512	2	1.27	44.94	. 1.	11	-3.64
$\bullet p_2$	0.020	0.040	0.87	0.16	3.32		4.73	7.783	0.	.90	-3.02
● p ₃	0.023	0.037	1.08	0.19	4.07		1.00	37.89	0.	.89	-3.51
$\bullet p_4$	0.010	0.047	2.43	0.18	3.69		0.0021	18.60	3.	12	-10.04

Common explanation possible

Important Loop-Effects

 Explanation of b→cτν requires large bτ and sτ couplings (follows from SU(2) invariance)

AC, C. Greub, D. Müller, F. Saturnino, PRL 2018

Large loop effects in $b \rightarrow s \mu \mu$

R(D^(*)) and b \rightarrow s $\tau\tau$

Large couplings to the second generation

B. Capdevila, AC, S. Descotes-Genon, L. Hofer and J. Matias, PRL.120.181802

Important Loop-Effects

- Explanation of b \rightarrow c τ v requires large LQ-b τ and LQ-c-v_{τ} couplings
- Via SU(2) invariance this leads to large effects in

b→sττ processes

- Closing the tau-loop gives a LFU effect in $b \rightarrow sll$ M. Algueró, B. Capdevila, S. Descotes-Genon, P. Masjuan, J. Matias, PRD, 2019
- Effect goes in the right direction

Explanation of $b \rightarrow c\tau v$ leads to loop effects in $b \rightarrow s\mu\mu$

Vector LQ Phenomenology

Compatible with constraints for generic couplings

Possible UV completions

- SU(4)×SU(3)'×SU(2)_L×U(1)_Y + Vector-like fermions
 L. Di Luzio, A. Greljo, M. Nardecchia, arXiv:1708.08450
- SU(4)×U(2)_L×SU(2)_R + Vector-like fermions L. Calibbi, AC, T. Li, arXiv:1709.00692
- SU(4)×SU(4)×SU(4)
 M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, arXiv:1712.01368
- SU(4)×SU(2)_L×SU(2)_R including scalar LQs and light right-handed neutrinos
 J. Heeck, D. Teresi, arXiv:1808.07492
- SU(8) might even explain ε'/ε
 S. Matsuzaki, K. Nishiwaki and K. Yamamoto, arXiv:1806.02312
- SU(4)×SU(2)_L×SU(2)_R in RS background

M. Blanke, AC, arXiv:1801.07256

Good solution, but challenging UV completion

Pati-Salam RS Phenomenology

Model well motivated + limited but sizable effect