

Introduction to Jupyter at NHR@KIT

Samuel Braun, SCC, KIT

Outline

- Motivation
- Project Jupyter
- JupyterHub@HoreKa
- Software and Kernels
- Outlook
- Questions

Reference: Jupyter @ KIT

Most information can be found at

bwHPC Wiki:

https://wiki.bwhpc.de/e/Jupyter_at_SCC

NHR@KIT Wiki: https://www.selar.lit.edu/web/

https://www.nhr.kit.edu/userdocs/jupyter

Motivation

Why Jupyter?

HPC – "Classical"

SSH

High Entry Hurdles

Choice of resources

Linux

Tools for connection and data transfer

Remote-Visualization

VNC? X11?

State of the art for advanced requirements!

Why Jupyter?

HPC – Jupyter

Web browser

- No additional software
- No data transfer for analysis

Low Entry Hurdles

Intermediate performance requirements

- Interactive visualization of data
- Prototyping

Project Jupyter

数

Project Jupyter

- Spin-off from project IPython
- Jupyter: Core languages
 - 📕 Julia
 - Python notebook
 - R
- Language agnostic
- Jupyter kernels
 - IPython
 - 📕 IJulia
 - IRKernel
 - >100 other kernels

Jupyter Notebook

- Open-source web application
- Create and share documents
 - Live code
 - 2 JUDYTET Lorenz Differential Equations (autosaved Equations Cell Kernel Python 3 O Insert C Code Cell Toolbar: None 4 Visualizations Exploring the Lorenz System JUDYTET Welcome to P In this Notebook we explore the Lorenz system of differential equations: Cell Narrative text $\dot{x} = \sigma(y - x)$ + **>** | (P) FA * $\dot{y} = \rho x - y - xz$ $\dot{z} = -\beta z + xy$ HTML5 is the limit... This is one of the classic systems in non-linear differential equations. It exhibits a range of 💭 jupyter complex behaviors as the parameters (σ , β , ρ) are varied, including what are known as chaotic solutions. The system was originally developed as a simplified mathematical model for atmospheric convection in 1963. **Execute code in browser** Welcome to the In [7]: interact(Lorenz, N=fixed(10), angle=(0.,360.), $\sigma = (0.0, 50.0), \beta = (0., 5), \rho = (0.0, 50.0))$ This Notebook Server was 308.2 angle ... on HoreKa WARNING 12 max_time Don't rely on this serv 10 .ipynb file Your server is hosted than 2.6 28 Run some Python JSON document To run the code below: 1. Click on the cell to se 2. Press SHIFT+ENTER A full tutorial for using the In []: %matplotlib inline 0 import pandas as pd import numpy as np import matplotlib

https://jupyter.org/

Jupyter<u>Lab</u>

- User interface for Project Jupyter
- Arrange documents/activities in tabs/blocks
 - Notebook
 - Terminal
 - Text editor
 - File browser
 - Rich outputs

...

https://jupyter.org/

Jupyter<u>Hub</u>

- Multi-user server for Jupyter Notebooks
- User management and authentication
- Spawning and proxying
- HPC context
 - Choice of resources
 - Slurm integration
 - Authentication

Jupyter: How-To

12 09.12.2021 Introduction to Jupyter at NHR@KIT Dr. Samuel Braun

Local Jupyter

Requirements:

- Python / Anaconda (Windows users)
- (nodejs + npm: JupyterLab extensions)

Install locally

```
python -m venv env
source env/bin/activate
pip install jupyterlab
```

Start

- Jupyter Notebook: jupyter notebook
- JupyterLab: jupyter lab

Use Use

Open http://127.0.0.1:8888 in web browser

Live Demo

Jupyter Notebook example mentioned in last c't [1]

Install

python -m venv env source env/bin/activate pip install jupyterlab

Additional Packages

pip install matplotlib ipympl

jupyter labextension install jupyter-matplotlib

Start

Notebook

jupyter notebook

JupyterLab jupyter lab

[1]: *Create the second s*

Get the notebook:

git clone https://github.com/pinae/BresenhamLidar

Jupyter@HoreKa

- Login to HoreKa, start interactive job ssh <userID>@hk.scc.kit.edu salloc -p accelerated --gres=gpu:4 --time=30:00
- Wait till job is running, remember compute node hostname (nodeID) and install and/or start Jupyter Notebook or JupyterLab ... module load jupyter/base jupyter notebook --no-browser --port=8888 --ip 0.0.0.0
- From your local terminal: Establish SSH tunnel to compute node ssh -L 8888:<nodeID>:8888 hk.scc.kit.edu
- Open in web browser: http://127.0.0.1:8888

JupyterHub@HoreKa

No.

Registration Process – HoreKa

Registration @ HoreKa

- Online proposal form (Jards)
- Peer reviewed proposal
- HoreKa access form for each coworker
- Web registration

Set service password

FeLS \rightarrow HoreKa \rightarrow Set service password

Register a software or hardware token (alias 2FA)

- FeLS \rightarrow My Tokens
- KIT users: https://my.scc.kit.edu/token

Accessing HoreKa

Only within network

… of KIT

- ... of your **home institution**
- ... otherwise establish VPN connection

SSH

ssh <userid>@hk.scc.kit.edu

TOTP prompt (first)

Service password (second)

Jupyter

(modern) Web browser: https://hk-jupyter.scc.kit.edu

- ONE successful login via SSH required
 - ... otherwise there is no \$HOME
 - ... spawning will fail (timeout)

18 09.12.2021 Introduction to Jupyter at NHR@KIT Dr. Samuel Braun

Selection of Resources – Normal

Select your resources The grayed out fields contain a reasonable preselection of resources. Other values can be selected in advanced mode. Number of CPU-cores: 76 🗸 Number of GPUs: 0 ~ **Runtime:** 0.5 hour 🗸 Partition: cpuonly V Amount of memory: 237GB 🗸 JupyterLab-Basemodule: jupyter/tensorflow \mathbf{v} Advanced Mode: Г Spawn

"Normal" mode

- Number of CPU cores OR GPUs
- Runtime
- Jupyter Basemodule
- Grayed out fields: Sane preselection of resources

Spawn

- Starts JupyterLab in interactive Slurm session
- Connects/proxies to that session

Selection of Resources – Advanced

Select your resources The grayed out fields contain a reasonable preselection of resources. Other values can be selected in advanced mode.		
Number of CPU-cores:	76 🗸	
Number of GPUs:	0 v	
Runtime:	0.5 hour 🗸	
Partition:	cpuonly v	
Amount of memory:	237GB v	
JupyterLab-Basemodule:	jupyter/tensorflow 🗸	
Advanced Mode:		
Reservation:		
Account:		
Mount LSDF:		
Use BEEOND:		
Spawn		

"Advanced" mode

- Free choice of resources
- No grayed out fields
- No auto reservation
- Reservation
- Account
- LSDF
- BEEOND

Jupyter Software Stacks

Lmod modules

- jupyter/base
- jupyter/tensorflow
- JupyterLab lives inside venv
 - --system-site-packages enabled/visible
 - Possible interference with pip --user installs (!)

Access via

- Drop-down menu in JupyterHub: "JupyterLab-Basemodule"
- module load jupyter/base or jupyter/tensorflow

Login: Step-by-Step

Step-by-Step Jupyter@HoreKa (1/4)

Go to https://hk-jupyter.scc.kit.edu and click on "Login"

... or go directly to https://hk-jupyter.scc.kit.edu/hub/login

Choose your home organization and continue

Step-by-Step Jupyter@HoreKa (2/4)

- Login to your home organization
 - Username + password
 - 2FA

Step-by-Step Jupyter@HoreKa (3/4)

- Click "Enter JupyterHub"
- Select resources and click "Spawn"

Step-by-Step Jupyter@HoreKa (4/4)

Spawning may take a while

- ... timeout after 10 minutes
- JupyterLab runs <u>on compute node</u> on HoreKa

lupyterHub × +	\circ - \circ \otimes
\leftarrow \rightarrow C \triangle $$ hk-jupyter.scc.kit.edu/hub/spawn-pending/ej4555	x 🛈 🗚 🏝 E
Cjupyterhub Home Token Admin	⊴ jupyterLab × + • •
Your server is starting u	$\leftarrow \rightarrow \mathbf{C} \ \Delta \ \mathbf{a} \ \mathbf{hk}$ -jupyter.scc.kit.edu/user/ej4555/lab? $\boxplus \ \mathbf{k} \ 0 \ \mathbf{k} \ \mathbf{k}$
You will be redirected automatically whe	💭 File Edit View Run Kernel Tabs Settings Help
	Search available modules Etest-allipynb ×
Cluster job running waiting to	LOADED MODULES + IN TO Python 3 (ipykernel) O
Event log	Compiler/gnu/10 devel/cuda/11.4 Imployen/pi/cuda/11.4 import tensorflow as tf piupter/tensorflow print(tfversion_) print(tfversion_) print("tf.config.list_physical_devices('CPU'):", tf.config.list_physical_devices('CPU'),"\n") imployenmpi/4.0 numbi/cmk/2020
	AVAILABLE MODULES AVAILABLE MODULES for gpu in gpus; print("Mame:", gpu.name, " Type;", gpu.device_type)
	cae/openfoam/v1612+ with tf.device('GPU:0'): print(tf.range(10)) cae/openfoam/v1812 cae/openfoam/v1812 tf.reduce_sum(tf.random.normal([10000, 10000])) cae/openfoam/v196
	cae/openfoam/v1902 2.6.9 cae/openfoam/v2006 tf.config.list_physical_devices('CPU'): [PhysicalDevice(name='/physical_device:CPU:0', device_type='CPU')] cae/openfoam/v2012 Name: /physical_device:GPU:0 cae/openfoam/v2016 Name: /physical_device:GPU:0 cae/openfoam/v2016 Name: /physical_device:GPU:0 cae/openfoam/6 Name: /physical_device:GPU:2 cae/openfoam/7 Type: GPU
	cae/openfoam/9 2021-11-30 09:51:11.55785:11 tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with cae/ansys/2020R1 cae/ansys/2020R2 cae/s/syna/12.00 cae/sig/ma/12.00 cae/s/syna/12.00 2021-11-30 09:51:11.514275: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1510] Created device /job:localhost/replic cae/s/sdyna/321 e capability: 8.0

Hands-On: Login ~10min

27 09.12.2021 Introduction to Jupyter at NHR@KIT Dr. Samuel Braun

Hands-On: Login

- Start a session at https://hk-jupyter.scc.kit.edu
 - Hint: choose "accelerated" partition

Software and Kernels

Select Software

- Activate Lmod software modules
 - \rightarrow blue button
 - \rightarrow search field
- Kernel restart required

Add Python Packages + Custom Kernel

Python: Use virtual environments
python -m venv myEnv
source myEnv/bin/activate
pip install <myPackage>

Install kernel \rightarrow IPython docs

python -m ipykernel install \
 --user \
 --name myEnv \
 --display-name "Python (myEnv)"

You will get this:

R and Julia Kernel

You want to use R

- Load module math/R
- Open terminal
- R
- install.packages('IRkernel')
- IRkernel::installspec()

You want to use Julia

- Load module devel/julia/1.6.2
- Open terminal
- 📕 julia
 -]
 add IJulia

Resetting everything

~/.bashrc

Hands-On: First Steps ~10min

Hands-On: First Steps

- Run the c't example on HoreKa
 - Hint 1:

git clone https://github.com/pinae/BresenhamLidar

Hint 2:

Replace %matplotlib notebook by %matplotlib widget

- Install a Julia Kernel
 - Compute 1+1 in a Julia Notebook
 - Try out some examples, e.g.: https://rosettacode.org/wiki/Factorial#Julia

WIP: BYO Jupyter Container

Connect containerized Jupyter with JupyterHub@HoreKa

Docker images from any registry

- For complicated/intrusive software stacks
- Optimized software stacks
 - Intel, e.g. intel/intel-optimized-tensorflow
 - Nvidia, e.g. nvcr.io#nvidia/tensorflow:21.10-tf2-py3
 - AMD, e.g. rocm/tensorflow:rocm4.3.1-tf2.6-dev

Possible root access (sic!)

Yes, you can

sudo apt-get install <myPackage>

Select your resources

The grayed out fields contain a reasonable preselection of resources. Other values can be selected in advanced mode.

Number of CPU-cores:	1 🗸	
Number of GPUs:	0 🗸	
Runtime:	0.5 hour 🗸	
Partition:	single v	
Amount of memory:	4GB v	
JupyterLab-Basemodule:	Container Mode 🗸	
Advanced Mode:		
Container Mode:		
container-image	jupyter/base-notebook	
container-name		
container-mount-home		
container-mounts= <default mounts=""></default>		
no-container-remap-root		
Spawn		

Thank you for your attention! Questions?

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

