

EXCESS workshop 2021

Seeding a common effort to understand the observed excess signals in the sub-keV region

Margarita Kaznacheeva

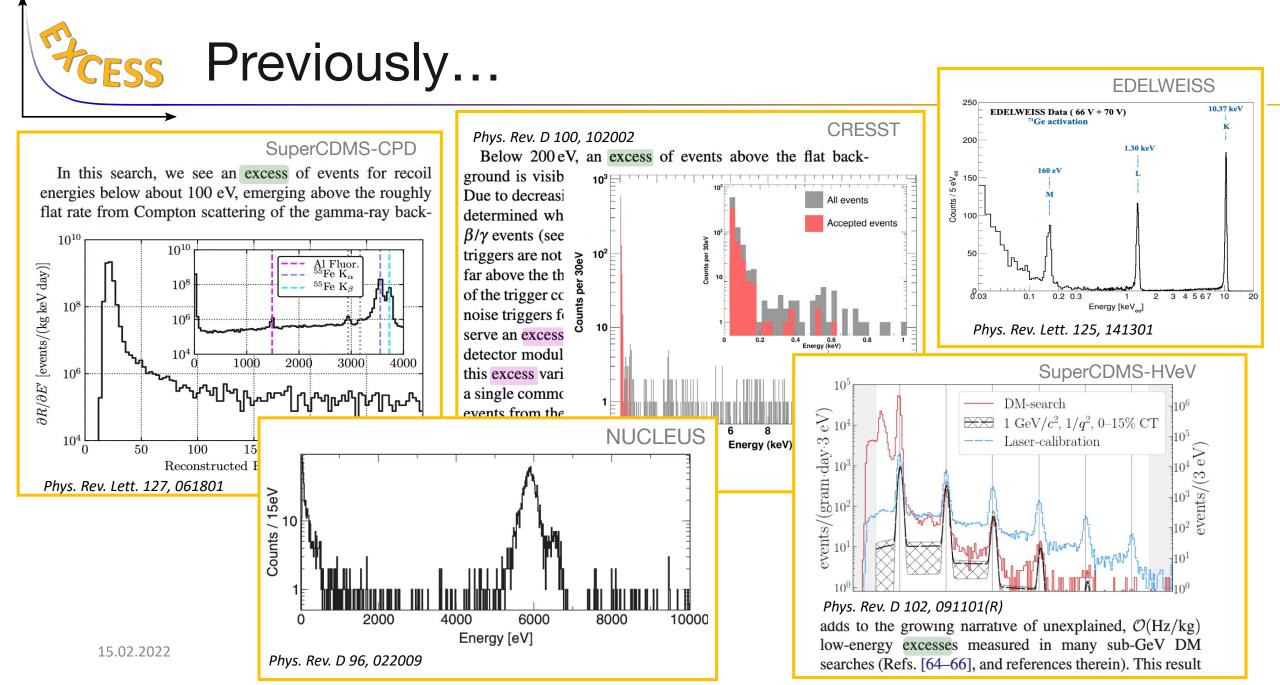
On behalf of the EXCESS 2021 workshop organizers: A. Fuss^{1,2}, M. Kaznacheeva³, F. Reindl^{1,2}, F. Wagner¹

¹ Institute of High Energy Physics of the Austrian Academy of Sciences

²Institute of Atomic and Subatomic Physics, Vienna University of Technology

³Physik-Department and ORIGINS Excellence Cluster, Technical University of Munich

Technische Universität München



- Motivation for the EXCESS initiative
- EXCESS 2021 workshop main outcomes
- White paper
- What's next?

- Unexplained sharply rising event rates below a few hundred eV are observed in multiple experiments with various technologies, different materials, above and below ground.
- This excess over the expected known backgrounds is the main limitation for further sensitivity improvement of low-threshold experiments (Dark Matter searches, CEvNS detection).
- The community has a **shared challenge**.

Bring together the experts from the experiments where the excesses are observed

1. Share the observations together with details about the measurement conditions, detector setups, measured spectra

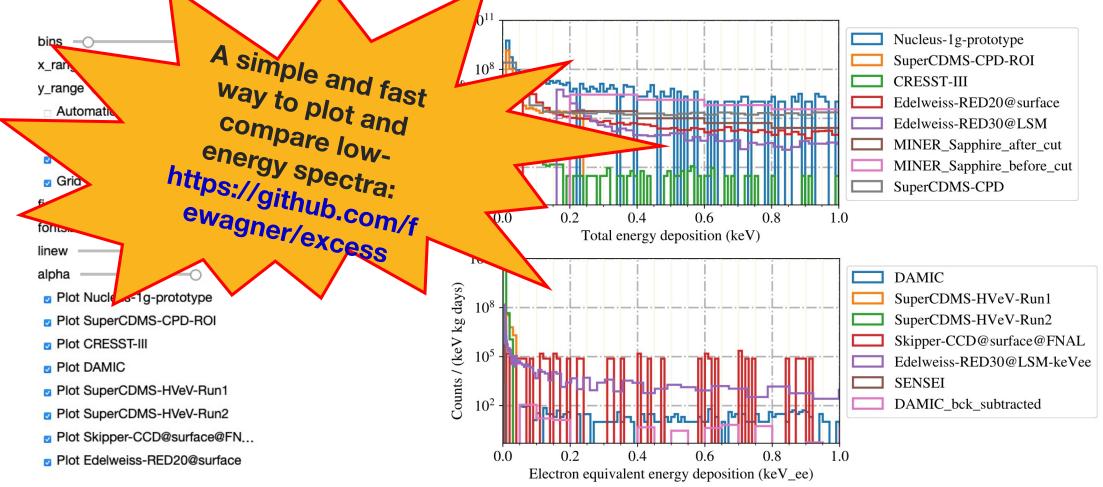
2. Start a scientific discussion within the community

EXCESS Workshop

CESS Data is publicly available!

@ launch binder https://github.com/fewagner/excess

Excess Workshop Data Repository


Multiple rare event search experiments of phenomenon is yet unexplained and the comis the objective of the EXCESS workshop (https:// provided data for the workshop and

CONNIE/Skipper-CCD CRESST DAMIC EDELWEISS MINER NEWS-G NUCLEUS PhyStat-DM RICOCHET SENSEI ents ob d the com kshop (https:). Data required to reproduce the energy various experiments is publicly accessible.

15.02.2022

Instruction how to use the online visualization tool: https://indico.cern.ch/event/1013203/attachments/2264385/3847018/how_to_plot_excess.pdf

8

Step 3: raise further awareness

https://arxiv.org/abs/2202.05097

arXiv.org > astro-ph > arXiv:2202.05097

Astrophysics > Instrumentation and Methods for Astrophysics

[Submitted on 10 Feb 2022]

EXCESS workshop: Descriptions of rising low-energy spectra

 Detailed description of the observed low energy spectra together with the spectra comparison are presented in the collaborative white paper – available on arXiv now.

EXCESS 2021: White paper's structure

5

6

7

8

11

15

18

21

23

25

26

27

29

31 31

34

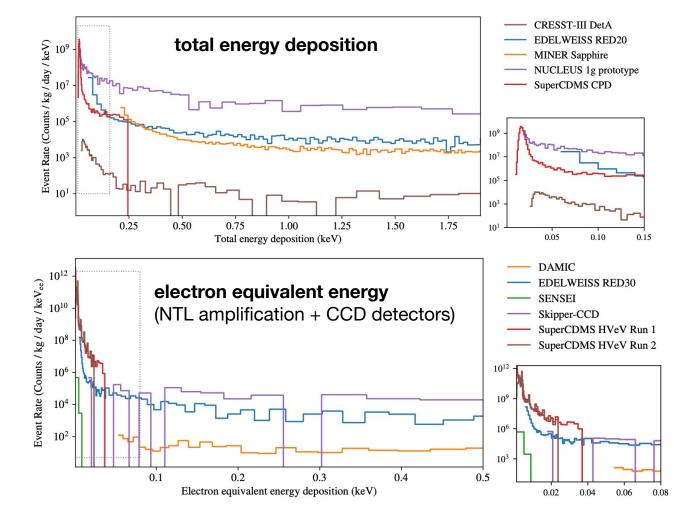
35

38

Contents

1 Introduction

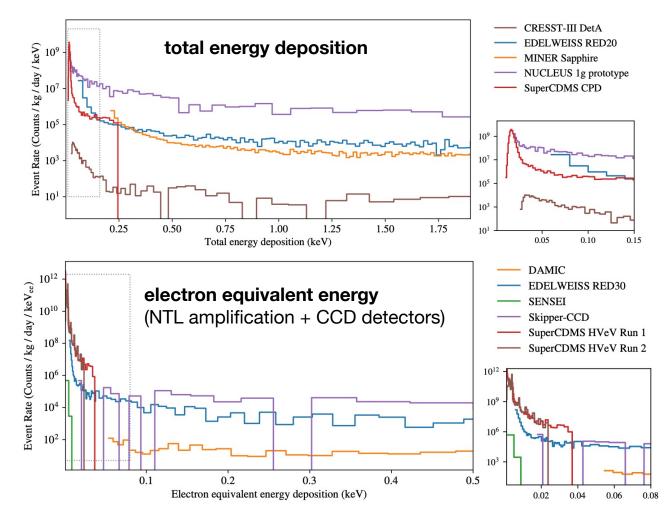
- 2 Experimental observation of rising low-energy spectra
 - 2.1 Cryogenic Detectors
 - 2.1.1 CRESST-III
 - 2.1.2 EDELWEISS and Ricochet-CryoCube
 - 2.1.3 MINER
 - 2.1.4 NUCLEUS
 - 2.1.5 SuperCDMS HVeV
 - 2.1.6 SuperCDMS CPD
 - 2.2 CCD detectors
 - 2.2.1 DAMIC
 - 2.2.2 SENSEI
 - 2.2.3 Skipper CCD running above ground at Fermilab
 - 2.3 Gaseous ionization detectors
 - 2.3.1 NEWS-G
- 3 Comparison of the measured spectra
- 4 Summary and Outlook
- References


- Introduction to the problem
- Brief description of the common experimental techniques and global terminology
- Detailed descriptions of the measurements, detector setups, and observed low-energy spectra
- Short discussions on the considered origins and planned tests
- Comparison of the presented energy spectra
- Summary and further plans

CESS Comparison of the measured energy spectra

The measurements are separated into two groups according to their energy units:

- Total energy deposition (no assumption on the interaction type - NR or ER)
 phonon detectors
- 2. Electron equivalent energy deposition (assuming all incoming particles scattered off electrons in the detector material)
 - Phonon detectors with NTL amplification
 - CCD detectors


All spectra are scaled to count/keV/kg/day

CESS Comparison of the measured energy spectra

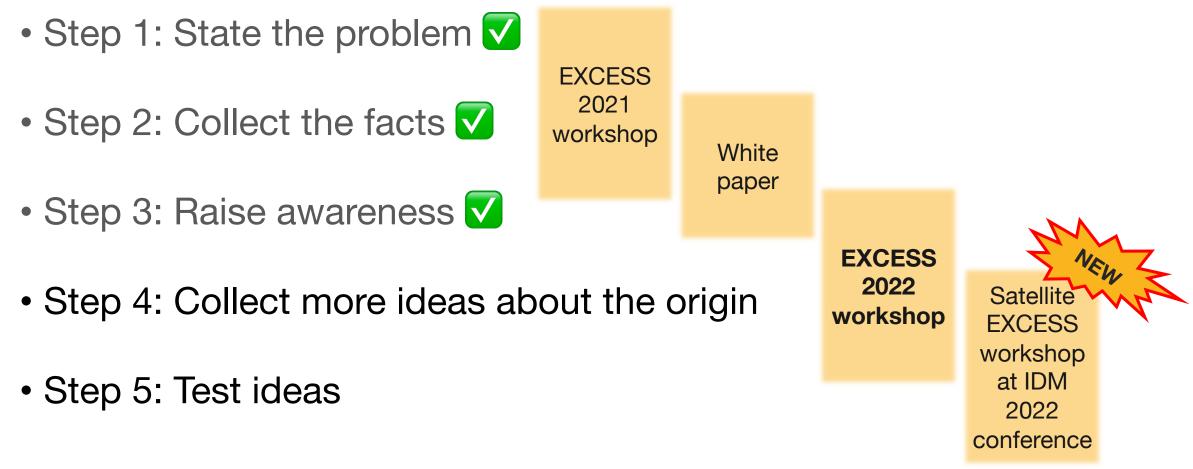
Key properties of the measurements

	51 1				
Measurement	Target	Sensor	Exposure (kg days)	Operation Tempera- ture	Depth (m.w.e.)
CRESST III DetA	23.6 g CaWO ₄	Tungsten TES	5.594	15 mK	3600 (LNGS)
EDELWEISS RED20	33.4 g Ge	NTD	0.033	17 mK	above ground
MINER Sap- phire	100 g Al ₂ O ₃	QET	2.72	7 mK	above ground
NUCLEUS 1g prototype	0.49 g Al ₂ O ₃	Tungsten TES	0.0001	15-20 mK	above ground
SuperCDMS CPD	10.6 Si	QET	0.0099	41.5 mK	above ground
DAMIC	40 g Si	CCDs	10.927	140 K	6000 (SNOLAB)
EDELWEISS RED30	33.4 g Ge	NTD, NTL amplification	0.081	20.7 mK	4800 (LSM)
SENSEI	1.926 g Si	Skipper CCD	0.0955	135 K	225 (Fermilab)
Skipper CCD	0.675 g Si	Skipper CCD	0.0022	140 K	above ground
SuperCDMS HVeV Run 1	0.93 g Si	QET, NTL am- plification	0.00049	33-36 mK	above ground
SuperCDMS HVeV Run 2	0.93 g Si	QET, NTL am- plification	0.0012	50-52 mK	above ground
NEWS-G	114 g CH ₄	SPC	0.0156	Room tempera- ture	4800 (LSM)

Considered origins of the excess

Group 1: particle origin

- Cherenkov interactions
- transition radiation
- luminescence
- surface backgrounds
- neutrons



Group 2: detector origin

- intrinsic stress of the target crystals
- stress induced by detector holders
- microfractures
- cracks in the glue attached to the target

Given the strongly varying rates and shapes of the excess signals, having a single common origin for all observed signals is unlikely.

