Low-energy background in a SuperCDMS HVeV detector

Runze (Tom) Ren, SuperCDMS collaboration

N

SuperCDMS HVeV detector

Phonon sensors on silicon/germanium crystal

$$egin{aligned} E_{phonon} &= E_{recoil} + n_{eh} eV_{NTL} \ &= E_{recoil} \cdot (1 + rac{eV_{NTL}}{\epsilon_{eh}} \cdot Y) \end{aligned}$$

OV mode (V_{NTL}=0): <u>Phonon energy = recoil energy</u>

HV mode (V_{NTL}≠0): <u>Phonon energy = recoil energy + NTL phonon energy</u>

* B.S. Neganov and V.N. Trofimov, Otkrytia i Izobret. 146, 215 (1985).
P.N. Luke, J. Beeman, F.S. Goulding, S.E. Labov, and E.H. Silver, Nucl. Instrum. Meth. Phys. Res. A 289, 406-409 (1990)
Runze (Tom) Ren \ EXCESS 2022 \ 2.14.2021

The detector was operated in a surface lab at Northwestern University. O(1) gram-day exposure acquired at **0 V, 60 V and 100 V**

We see low-energy excess (compared to the flat high-energy background) in both 0V and HV mode.

- 1. They are not compatible with DM/neutron signal due to anomalous pulse shape, see next slide
- 2. They can be partly removed with event selection. However in this study we keep all of them to investigate their origin.

Runze (Tom) Ren \ EXCESS 2022 \ 2.14.2021

1) Pulse shape

We see anomalous pulse shapes in events from the excess in 0V and HV mode

2) Energy spectra

$$\mathrm{E}_{phonon} = \mathrm{E}_{recoil} \cdot \overline{\left(1 + e \mathrm{V}_{\mathrm{NTL}} / \epsilon_{eff}
ight)} \operatorname{G}_{\mathsf{NTL}}$$

Energy spectrum scales with $G_{_{\rm NTL}}$.

By looking for the G_{NTL} where the spectra match each other best, we can **measure the effective charge pair** creation energy ϵ_{eff} of the background events.

2) Energy spectra

We scale the HV spectra with different $G_{NTL}(\epsilon_{eff})$, and calculate the χ^2 between 0V spectrum and the scaled HV spectrum.

 \rightarrow Data is in favor of $\varepsilon_{eff} \ \sim \ 4-5 \ eV$ (just a rough estimation, not a confidence interval)

Other properties of HV burst events

- 1. Secondary pulses have recoil energy of ~2 eV
- 2. Burst events are seen in multiple detectors in another experiment setup of 4 HVeV detectors.

Fig. 3. Decay kinetics of the red R, blue B and UV luminescence in thin SiO₂ films partially doped with Si⁺ and O⁺ ions and excited by a pulsed electron beam at liquid nitrogen temperature (LNT).

Runze (Tom) Ren \ EXCESS 2022 \ 2.14.2021

The HV excess in HVeV detector is dominated by burst events

- Burst events are likely to have an external origin:
 - Most burst events have coincidence events in other detectors
 - Luminescence of SiO₂ in PCB may be one of the origins
- The **0V** excess in **HVeV** detector can be partly explained by burst events seen at HV

\rightarrow We designed a new detector holder with minimized G10 PCB/insulator

Improved detector holder

The new detector holder is made out of copper.

- No G10 PCB; thin kapton PCB is used for electrical connection
- Two detectors side by side to detect coincidence events

Data-taking and analysis is ongoing. Stay tuned!

This luminescence-like background is the dominating background in SuperCDMS HVeV detectors in HV mode.

It may present in other experiments at a different level.